iptables and Google BigQuery Integration
Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.
5B+
Telegraf downloads
#1
Time series database
Source: DB Engines
1B+
Downloads of InfluxDB
2,800+
Contributors
Table of Contents
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Input and output integration overview
The iptables plugin for Telegraf collects metrics on packet and byte counts for specified iptables rules, providing insights into firewall activity and performance.
The Google BigQuery plugin allows Telegraf to write metrics to Google Cloud BigQuery, enabling robust data analytics capabilities for telemetry data.
Integration details
iptables
The iptables plugin gathers packets and bytes counters for rules within a set of table and chain from the Linux iptables firewall. The plugin monitors rules identified by associated comments, as rules without comments are ignored. This approach ensures a unique identification for the monitored rules, which is particularly important since the rule number can change dynamically as rules are modified. To use this plugin effectively, users must name their rules with unique comments. The plugin also requires elevated permissions (CAP_NET_ADMIN and CAP_NET_RAW) to run, which can be configured either by running Telegraf as root (discouraged), using systemd capabilities, or by configuring sudo appropriately. Additionally, defining multiple instances of the plugin might lead to conflicts; thus, using locking mechanisms in the configuration is recommended to avoid errors during concurrent accesses.
Google BigQuery
The Google BigQuery plugin for Telegraf enables seamless integration with Google Cloud’s BigQuery service, a popular data warehousing and analytics platform. This plugin facilitates the transfer of metrics collected by Telegraf into BigQuery datasets, making it easier for users to perform analyses and generate insights from their telemetry data. It requires authentication through a service account or user credentials and is designed to handle various data types, ensuring that users can maintain the integrity and accuracy of their metrics as they are stored in BigQuery tables. The configuration options allow for customization around dataset specifications and handling metrics, including the management of hyphens in metric names, which are not supported by BigQuery for streaming inserts. This plugin is particularly useful for organizations leveraging the scalability and powerful query capabilities of BigQuery to analyze large volumes of monitoring data.
Configuration
iptables
[[inputs.iptables]]
## iptables require root access on most systems.
## Setting 'use_sudo' to true will make use of sudo to run iptables.
## Users must configure sudo to allow telegraf user to run iptables with
## no password.
## iptables can be restricted to only list command "iptables -nvL".
use_sudo = false
## Setting 'use_lock' to true runs iptables with the "-w" option.
## Adjust your sudo settings appropriately if using this option
## ("iptables -w 5 -nvl")
use_lock = false
## Define an alternate executable, such as "ip6tables". Default is "iptables".
# binary = "ip6tables"
## defines the table to monitor:
table = "filter"
## defines the chains to monitor.
## NOTE: iptables rules without a comment will not be monitored.
## Read the plugin documentation for more information.
chains = [ "INPUT" ]
Google BigQuery
# Configuration for Google Cloud BigQuery to send entries
[[outputs.bigquery]]
## Credentials File
credentials_file = "/path/to/service/account/key.json"
## Google Cloud Platform Project
# project = ""
## The namespace for the metric descriptor
dataset = "telegraf"
## Timeout for BigQuery operations.
# timeout = "5s"
## Character to replace hyphens on Metric name
# replace_hyphen_to = "_"
## Write all metrics in a single compact table
# compact_table = ""
Input and output integration examples
iptables
-
Monitoring Firewall Performance: Monitor the performance and efficiency of your firewall rules in real time. By tracking packet and byte counters, network administrators can identify which rules are most active and may require optimization. This enables proactive management of firewall configurations to enhance security and performance, especially in environments where dynamic adjustments are frequently made.
-
Understanding Traffic Patterns: Analyze incoming and outgoing traffic patterns based on specific rules. By leveraging the metrics gathered by this plugin, system admins can gain insights into which services are receiving the most traffic, effectively identifying popular services and potential security threats from unusual traffic spikes.
-
Automated Alerting on Traffic Anomalies: Integrate the iptables plugin with an alerting system to notify administrators of unusual activity detected by the firewall. By setting thresholds on the collected metrics, such as sudden increases in packets dropped or unexpected protocol use, teams can automate responses to potential security incidents, enabling swift remediation of threats to the network.
-
Comparative Analysis of Firewall Rules: Conduct comparative analyses of different firewall rules over time. By collecting historical packet and byte metrics, organizations can evaluate the effectiveness of various rules, making data-driven decisions on which rules to modify, reinforce, or remove altogether, thus streamlining their firewall configurations.
Google BigQuery
-
Real-Time Analytics Dashboard: Leverage the Google BigQuery plugin to feed live metrics into a custom analytics dashboard hosted on Google Cloud. This setup would allow teams to visualize performance data in real-time, providing insights into system health and usage patterns. By using BigQuery’s querying capabilities, users can easily create tailored reports and dashboards to meet their specific needs, thus enhancing decision-making processes.
-
Cost Management and Optimization Analysis: Utilize the plugin to automatically send cost-related metrics from various services into BigQuery. Analyzing this data can help businesses identify unnecessary expenses and optimize resource usage. By performing aggregation and transformation queries in BigQuery, organizations can create accurate forecasts and manage their cloud spending efficiently.
-
Cross-Team Collaboration on Monitoring Data: Enable different teams within an organization to share their monitoring data using BigQuery. With the help of this Telegraf plugin, teams can push their metrics to a central BigQuery instance, fostering collaboration. This data-sharing approach encourages best practices and cross-functional awareness, leading to collective improvements in system performance and reliability.
-
Historical Analysis for Capacity Planning: By using the BigQuery plugin, companies can collect and store historical metrics data essential for capacity planning. Analyzing trends over time can help anticipate system needs and scale infrastructure proactively. Organizations can create time-series analyses and identify patterns that inform their long-term strategic decisions.
Feedback
Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Related Integrations
Related Integrations
HTTP and InfluxDB Integration
The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.
View IntegrationKafka and InfluxDB Integration
This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.
View IntegrationKinesis and InfluxDB Integration
The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.
View Integration