iptables and Databricks Integration
Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.
5B+
Telegraf downloads
#1
Time series database
Source: DB Engines
1B+
Downloads of InfluxDB
2,800+
Contributors
Table of Contents
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Input and output integration overview
The iptables plugin for Telegraf collects metrics on packet and byte counts for specified iptables rules, providing insights into firewall activity and performance.
Use Telegraf’s HTTP output plugin to push metrics straight into a Databricks Lakehouse by calling the SQL Statement Execution API with a JSON-wrapped INSERT or volume PUT command.
Integration details
iptables
The iptables plugin gathers packets and bytes counters for rules within a set of table and chain from the Linux iptables firewall. The plugin monitors rules identified by associated comments, as rules without comments are ignored. This approach ensures a unique identification for the monitored rules, which is particularly important since the rule number can change dynamically as rules are modified. To use this plugin effectively, users must name their rules with unique comments. The plugin also requires elevated permissions (CAP_NET_ADMIN and CAP_NET_RAW) to run, which can be configured either by running Telegraf as root (discouraged), using systemd capabilities, or by configuring sudo appropriately. Additionally, defining multiple instances of the plugin might lead to conflicts; thus, using locking mechanisms in the configuration is recommended to avoid errors during concurrent accesses.
Databricks
This configuration turns Telegraf into a lightweight ingestion agent for the Databricks Lakehouse. It leverages the Databricks SQL Statement Execution API 2.0, which accepts authenticated POST requests containing a JSON payload with a statement
field. Each Telegraf flush dynamically renders a SQL INSERT (or, for file-based workflows, a PUT ... INTO /Volumes/...
command) that lands the metrics into a Unity Catalog table or volume governed by Lakehouse security. Under the hood Databricks stores successful inserts as Delta Lake transactions, enabling ACID guarantees, time-travel, and scalable analytics. Operators can point the warehouse_id
at any serverless or classic SQL warehouse, and all authentication is handled with a PAT or service-principal token—no agents or JDBC drivers required. Because Telegraf’s HTTP output supports custom headers, batching, TLS, and proxy settings, the same pattern scales from edge IoT gateways to container sidecars, consolidating infrastructure telemetry, application logs, or business KPIs directly into the Lakehouse for BI, ML, and Lakehouse Monitoring. Unity Catalog volumes provide a governed staging layer when file uploads and COPY INTO
are preferred, and the approach aligns with Databricks’ recommended ingestion practices for partners and ISVs.
Configuration
iptables
[[inputs.iptables]]
## iptables require root access on most systems.
## Setting 'use_sudo' to true will make use of sudo to run iptables.
## Users must configure sudo to allow telegraf user to run iptables with
## no password.
## iptables can be restricted to only list command "iptables -nvL".
use_sudo = false
## Setting 'use_lock' to true runs iptables with the "-w" option.
## Adjust your sudo settings appropriately if using this option
## ("iptables -w 5 -nvl")
use_lock = false
## Define an alternate executable, such as "ip6tables". Default is "iptables".
# binary = "ip6tables"
## defines the table to monitor:
table = "filter"
## defines the chains to monitor.
## NOTE: iptables rules without a comment will not be monitored.
## Read the plugin documentation for more information.
chains = [ "INPUT" ]
Databricks
[[outputs.http]]
## Databricks SQL Statement Execution API endpoint
url = "https://{{ env "DATABRICKS_HOST" }}/api/2.0/sql/statements"
## Use POST to submit each Telegraf batch as a SQL request
method = "POST"
## Personal-access token (PAT) for workspace or service principal
headers = { Authorization = "Bearer {{ env "DATABRICKS_TOKEN" }}" }
## Send JSON that wraps the metrics batch in a SQL INSERT (or PUT into a Volume)
content_type = "application/json"
## Serialize metrics as JSON so they can be embedded in the SQL statement
data_format = "json"
json_timestamp_units = "1ms"
## Build the request body. Telegraf replaces the template variables at runtime.
## Example inserts a row per metric into a Unity-Catalog table.
body_template = """
{
\"statement\": \"INSERT INTO ${TARGET_TABLE} VALUES {{range .Metrics}}(from_unixtime({{.timestamp}}/1000), {{.fields.usage}}, '{{.tags.host}}'){{end}}\",
\"warehouse_id\": \"${WAREHOUSE_ID}\"
}
"""
## Optional: add batching limits or TLS settings
# batch_size = 500
# timeout = "10s"
Input and output integration examples
iptables
-
Monitoring Firewall Performance: Monitor the performance and efficiency of your firewall rules in real time. By tracking packet and byte counters, network administrators can identify which rules are most active and may require optimization. This enables proactive management of firewall configurations to enhance security and performance, especially in environments where dynamic adjustments are frequently made.
-
Understanding Traffic Patterns: Analyze incoming and outgoing traffic patterns based on specific rules. By leveraging the metrics gathered by this plugin, system admins can gain insights into which services are receiving the most traffic, effectively identifying popular services and potential security threats from unusual traffic spikes.
-
Automated Alerting on Traffic Anomalies: Integrate the iptables plugin with an alerting system to notify administrators of unusual activity detected by the firewall. By setting thresholds on the collected metrics, such as sudden increases in packets dropped or unexpected protocol use, teams can automate responses to potential security incidents, enabling swift remediation of threats to the network.
-
Comparative Analysis of Firewall Rules: Conduct comparative analyses of different firewall rules over time. By collecting historical packet and byte metrics, organizations can evaluate the effectiveness of various rules, making data-driven decisions on which rules to modify, reinforce, or remove altogether, thus streamlining their firewall configurations.
Databricks
- Edge-to-Lakehouse Telemetry Pipe: Deploy Telegraf on factory PLCs to sample vibration metrics and post them every second to a serverless SQL warehouse. Delta tables power PowerBI dashboards that alert engineers when thresholds drift.
- Blue-Green CI/CD Rollout Metrics: Attach a Telegraf sidecar to each Kubernetes canary pod; it inserts container stats into a Unity Catalog table tagged by
deployment_id
, letting Databricks SQL compare error-rate percentiles and auto-rollback underperforming versions. - SaaS Usage Metering: Insert per-tenant API-call counters via the HTTP plugin; a nightly Lakehouse query aggregates usage into invoices, eliminating custom metering micro-services.
- Security Forensics Lake: Upload JSON batches of Suricata IDS events to a Unity Catalog volume using
PUT
commands, then runCOPY INTO
for near-real-time enrichment with Delta Live Tables, producing a searchable threat-intel lake that joins network logs with user session data.
Feedback
Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Related Integrations
Related Integrations
HTTP and InfluxDB Integration
The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.
View IntegrationKafka and InfluxDB Integration
This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.
View IntegrationKinesis and InfluxDB Integration
The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.
View Integration