iptables and MySQL Integration
Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.
5B+
Telegraf downloads
#1
Time series database
Source: DB Engines
1B+
Downloads of InfluxDB
2,800+
Contributors
Table of Contents
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Input and output integration overview
The iptables plugin for Telegraf collects metrics on packet and byte counts for specified iptables rules, providing insights into firewall activity and performance.
The Telegraf SQL plugin allows you to store metrics from Telegraf directly into a MySQL database, making it easier to analyze and visualize the collected metrics.
Integration details
iptables
The iptables plugin gathers packets and bytes counters for rules within a set of table and chain from the Linux iptables firewall. The plugin monitors rules identified by associated comments, as rules without comments are ignored. This approach ensures a unique identification for the monitored rules, which is particularly important since the rule number can change dynamically as rules are modified. To use this plugin effectively, users must name their rules with unique comments. The plugin also requires elevated permissions (CAP_NET_ADMIN and CAP_NET_RAW) to run, which can be configured either by running Telegraf as root (discouraged), using systemd capabilities, or by configuring sudo appropriately. Additionally, defining multiple instances of the plugin might lead to conflicts; thus, using locking mechanisms in the configuration is recommended to avoid errors during concurrent accesses.
MySQL
Telegraf’s SQL output plugin is designed to seamlessly write metric data to a SQL database by dynamically creating tables and columns based on the incoming metrics. When configured for MySQL, the plugin leverages the go-sql-driver/mysql, which requires enabling the ANSI_QUOTES SQL mode to ensure proper handling of quoted identifiers. This dynamic schema creation approach ensures that each metric is stored in its own table with a structure derived from its fields and tags, providing a detailed, timestamped record of system performance. The flexibility of the plugin allows it to handle high-throughput environments, making it ideal for scenarios that demand robust, granular metric logging and historical data analysis.
Configuration
iptables
[[inputs.iptables]]
## iptables require root access on most systems.
## Setting 'use_sudo' to true will make use of sudo to run iptables.
## Users must configure sudo to allow telegraf user to run iptables with
## no password.
## iptables can be restricted to only list command "iptables -nvL".
use_sudo = false
## Setting 'use_lock' to true runs iptables with the "-w" option.
## Adjust your sudo settings appropriately if using this option
## ("iptables -w 5 -nvl")
use_lock = false
## Define an alternate executable, such as "ip6tables". Default is "iptables".
# binary = "ip6tables"
## defines the table to monitor:
table = "filter"
## defines the chains to monitor.
## NOTE: iptables rules without a comment will not be monitored.
## Read the plugin documentation for more information.
chains = [ "INPUT" ]
MySQL
[[outputs.sql]]
## Database driver
## Valid options: mssql (Microsoft SQL Server), mysql (MySQL), pgx (Postgres),
## sqlite (SQLite3), snowflake (snowflake.com) clickhouse (ClickHouse)
driver = "mysql"
## Data source name
## The format of the data source name is different for each database driver.
## See the plugin readme for details.
data_source_name = "username:password@tcp(host:port)/dbname"
## Timestamp column name
timestamp_column = "timestamp"
## Table creation template
## Available template variables:
## {TABLE} - table name as a quoted identifier
## {TABLELITERAL} - table name as a quoted string literal
## {COLUMNS} - column definitions (list of quoted identifiers and types)
table_template = "CREATE TABLE {TABLE}({COLUMNS})"
## Table existence check template
## Available template variables:
## {TABLE} - tablename as a quoted identifier
table_exists_template = "SELECT 1 FROM {TABLE} LIMIT 1"
## Initialization SQL
init_sql = "SET sql_mode='ANSI_QUOTES';"
## Maximum amount of time a connection may be idle. "0s" means connections are
## never closed due to idle time.
connection_max_idle_time = "0s"
## Maximum amount of time a connection may be reused. "0s" means connections
## are never closed due to age.
connection_max_lifetime = "0s"
## Maximum number of connections in the idle connection pool. 0 means unlimited.
connection_max_idle = 2
## Maximum number of open connections to the database. 0 means unlimited.
connection_max_open = 0
## NOTE: Due to the way TOML is parsed, tables must be at the END of the
## plugin definition, otherwise additional config options are read as part of the
## table
## Metric type to SQL type conversion
## The values on the left are the data types Telegraf has and the values on
## the right are the data types Telegraf will use when sending to a database.
##
## The database values used must be data types the destination database
## understands. It is up to the user to ensure that the selected data type is
## available in the database they are using. Refer to your database
## documentation for what data types are available and supported.
#[outputs.sql.convert]
# integer = "INT"
# real = "DOUBLE"
# text = "TEXT"
# timestamp = "TIMESTAMP"
# defaultvalue = "TEXT"
# unsigned = "UNSIGNED"
# bool = "BOOL"
# ## This setting controls the behavior of the unsigned value. By default the
# ## setting will take the integer value and append the unsigned value to it. The other
# ## option is "literal", which will use the actual value the user provides to
# ## the unsigned option. This is useful for a database like ClickHouse where
# ## the unsigned value should use a value like "uint64".
# # conversion_style = "unsigned_suffix"
Input and output integration examples
iptables
-
Monitoring Firewall Performance: Monitor the performance and efficiency of your firewall rules in real time. By tracking packet and byte counters, network administrators can identify which rules are most active and may require optimization. This enables proactive management of firewall configurations to enhance security and performance, especially in environments where dynamic adjustments are frequently made.
-
Understanding Traffic Patterns: Analyze incoming and outgoing traffic patterns based on specific rules. By leveraging the metrics gathered by this plugin, system admins can gain insights into which services are receiving the most traffic, effectively identifying popular services and potential security threats from unusual traffic spikes.
-
Automated Alerting on Traffic Anomalies: Integrate the iptables plugin with an alerting system to notify administrators of unusual activity detected by the firewall. By setting thresholds on the collected metrics, such as sudden increases in packets dropped or unexpected protocol use, teams can automate responses to potential security incidents, enabling swift remediation of threats to the network.
-
Comparative Analysis of Firewall Rules: Conduct comparative analyses of different firewall rules over time. By collecting historical packet and byte metrics, organizations can evaluate the effectiveness of various rules, making data-driven decisions on which rules to modify, reinforce, or remove altogether, thus streamlining their firewall configurations.
MySQL
-
Real-Time Web Analytics Storage: Leverage the plugin to capture website performance metrics and store them in MySQL. This setup enables teams to monitor user interactions, analyze traffic patterns, and dynamically adjust site features based on real-time data insights.
-
IoT Device Monitoring: Utilize the plugin to collect metrics from a network of IoT sensors and log them into a MySQL database. This use case supports continuous monitoring of device health and performance, allowing for predictive maintenance and immediate response to anomalies.
-
Financial Transaction Logging: Record high-frequency financial transaction data with precise timestamps. This approach supports robust audit trails, real-time fraud detection, and comprehensive historical analysis for compliance and reporting purposes.
-
Application Performance Benchmarking: Integrate the plugin with application performance monitoring systems to log metrics into MySQL. This facilitates detailed benchmarking and trend analysis over time, enabling organizations to identify performance bottlenecks and optimize resource allocation effectively.
Feedback
Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Related Integrations
Related Integrations
HTTP and InfluxDB Integration
The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.
View IntegrationKafka and InfluxDB Integration
This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.
View IntegrationKinesis and InfluxDB Integration
The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.
View Integration