IPVS and GroundWork Integration

Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.

info

This is not the recommended configuration for real-time query at scale. For query and compression optimization, high-speed ingest, and high availability, you may want to consider IPVS and InfluxDB.

5B+

Telegraf downloads

#1

Time series database
Source: DB Engines

1B+

Downloads of InfluxDB

2,800+

Contributors

Table of Contents

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Input and output integration overview

The IPVS plugin is designed to collect metrics related to IPVS virtual and real servers on Linux systems.

This plugin writes to a GroundWork Monitor instance, allowing for effective metrics management and monitoring in a centralized manner.

Integration details

IPVS

The IPVS plugin gathers metrics about IPVS virtual and real servers using the Linux kernel netlink socket interface. As a component specifically designed for Linux, it tracks performance related to IP virtual servers, allowing users to monitor various attributes such as active connections, packet statistics, and byte counts. Key metrics include those for both virtual and real servers, facilitating a comprehensive view of server performance. The plugin also requires the Telegraf process to run with appropriate permissions, typically as root or a user with specific capabilities for proper operation.

GroundWork

The GroundWork plugin enables Telegraf to send metrics to a GroundWork Monitor instance, specifically supporting GW8 and newer versions. This integration allows users to leverage the robust monitoring capabilities of GroundWork, enabling comprehensive oversight of metrics collected from diverse sources. Users can specify various parameters such as the GroundWork instance URL, agent IDs, and authentication credentials, allowing for a tailored fit within their existing monitoring setups. It also supports secret-store secrets to enhance security for sensitive fields like username and password. Tags used within the plugin provide fine-grained control over how metrics are categorized and displayed within the GroundWork interface, allowing for custom configurations that adapt to different monitoring needs. However, users should be aware that string metrics are currently not supported by GroundWork, impacting how they manage their data.

Configuration

IPVS

[[inputs.ipvs]]
  # no configuration

GroundWork

[[outputs.groundwork]]
  ## URL of your groundwork instance.
  url = "https://groundwork.example.com"

  ## Agent uuid for GroundWork API Server.
  agent_id = ""

  ## Username and password to access GroundWork API.
  username = ""
  password = ""

  ## Default application type to use in GroundWork client
  # default_app_type = "TELEGRAF"

  ## Default display name for the host with services(metrics).
  # default_host = "telegraf"

  ## Default service state.
  # default_service_state = "SERVICE_OK"

  ## The name of the tag that contains the hostname.
  # resource_tag = "host"

  ## The name of the tag that contains the host group name.
  # group_tag = "group"

Input and output integration examples

IPVS

  1. Load Balancing Performance Monitoring: Use the IPVS plugin to monitor the performance of a load balancing setup in a Linux environment where IPVS is implemented. By collecting metrics such as byte counts, packet rates, and active connections, administrators can gain real-time insights into server performance, allowing for proactive adjustments to load distribution strategies and ensuring that no individual server becomes a bottleneck.

  2. Automated Alerting for Connection Thresholds: Integrate the metrics collected by the IPVS plugin with an alerting system to automatically notify administrators when active connections exceed or fall below specified thresholds. This use case enables dynamic scaling of backend resources, optimizing application performance and resource utilization, while minimizing the risk of sudden service disruptions.

  3. Historical Performance Trend Analysis: Store the metrics gathered by the IPVS plugin in a time-series database for historical analysis. By analyzing trends over time, organizations can identify patterns in server performance, correlate them with application usage spikes, and make informed decisions regarding infrastructure upgrades or maintenance schedules to better handle peak loads.

GroundWork

  1. Centralized Monitoring Dashboard: Use the GroundWork plugin to aggregate metrics from multiple Telegraf instances into a single GroundWork Monitor dashboard. This configuration offers complete visibility into system health across various components, enabling swift identification of performance bottlenecks and improved incident response times.

  2. Service Health Monitoring with Alerts: Configure this plugin to send critical service metrics to GroundWork, establishing a robust alerting system. Metrics such as CPU usage and service statuses can trigger alerts based on threshold values, informing administrators of potential issues before they escalate, thereby enhancing system reliability.

  3. Historical Data Analysis: Leverage the historical metric capabilities of GroundWork using this plugin to conduct trend analysis over time. This application allows organizations to make data-driven decisions based on comprehensive historical performance metrics, which can assist in capacity planning and optimize resource allocation.

  4. Custom Service Tags for Enhanced Monitoring: Extend the functionality of this plugin by utilizing custom tags for different services and hosts. By customizing these tags, users can filter and categorize metrics more effectively within their monitoring framework, leading to tailored monitoring experiences that align specifically with business objectives.

Feedback

Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Related Integrations

HTTP and InfluxDB Integration

The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.

View Integration

Kafka and InfluxDB Integration

This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.

View Integration

Kinesis and InfluxDB Integration

The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.

View Integration