IPVS and OSI PI Integration
Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.
5B+
Telegraf downloads
#1
Time series database
Source: DB Engines
1B+
Downloads of InfluxDB
2,800+
Contributors
Table of Contents
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Input and output integration overview
The IPVS plugin is designed to collect metrics related to IPVS virtual and real servers on Linux systems.
This setup converts Telegraf into a lightweight PI Web API publisher, letting you push any Telegraf metric into the OSI PI System with a simple HTTP POST.
Integration details
IPVS
The IPVS plugin gathers metrics about IPVS virtual and real servers using the Linux kernel netlink socket interface. As a component specifically designed for Linux, it tracks performance related to IP virtual servers, allowing users to monitor various attributes such as active connections, packet statistics, and byte counts. Key metrics include those for both virtual and real servers, facilitating a comprehensive view of server performance. The plugin also requires the Telegraf process to run with appropriate permissions, typically as root or a user with specific capabilities for proper operation.
OSI PI
OSI PI is an data management and analytics platform used in energy, manufacturing, and critical infrastructure. The PI Web API is its REST interface, exposing endpoints such as /piwebapi/streams/{WebId}/value that accept JSON payloads containing a Timestamp
and Value
. By pairing Telegraf’s flexible HTTP output with this endpoint, any metric Telegraf collects—SNMP counters, Modbus readings, Kubernetes stats—can be written directly into PI without installing proprietary interfaces. The configuration above authenticates with Basic or Kerberos, serializes each batch to JSON, and renders a minimal body template that aligns with PI Web API’s single-value write contract. Because Telegraf already supports batching, TLS, proxies, and custom headers, this approach scales from edge gateways to cloud VMs, allowing organizations to back-fill historical data, stream live telemetry, or mirror non-PI sources (e.g., Prometheus) into the PI data archive. It also sidesteps older SDK dependencies and enables hybrid architectures where PI remains on-prem while Telegraf agents run in containers or IIoT devices.
Configuration
IPVS
[[inputs.ipvs]]
# no configuration
OSI PI
[[outputs.http]]
## PI Web API endpoint for writing a single value to a PI Point by Web ID
url = "https://${PI_HOST}/piwebapi/streams/${WEB_ID}/value"
## Use POST for each batch
method = "POST"
content_type = "application/json"
## Basic-auth header (base64-encoded "DOMAIN\\user:password")
headers = { Authorization = "Basic ${BASIC_AUTH}" }
## Serialize Telegraf metrics as JSON
data_format = "json"
json_timestamp_units = "1ms"
## Render the JSON body that PI Web API expects
body_template = """
{{ range .Metrics -}}
{ "Timestamp": "{{ .timestamp | formatDate \"2006-01-02T15:04:05Z07:00\" }}", "Value": {{ index .fields 0 }} }
{{ end -}}
"""
## Tune networking / batching if needed
# timeout = "10s"
# batch_size = 1
Input and output integration examples
IPVS
-
Load Balancing Performance Monitoring: Use the IPVS plugin to monitor the performance of a load balancing setup in a Linux environment where IPVS is implemented. By collecting metrics such as byte counts, packet rates, and active connections, administrators can gain real-time insights into server performance, allowing for proactive adjustments to load distribution strategies and ensuring that no individual server becomes a bottleneck.
-
Automated Alerting for Connection Thresholds: Integrate the metrics collected by the IPVS plugin with an alerting system to automatically notify administrators when active connections exceed or fall below specified thresholds. This use case enables dynamic scaling of backend resources, optimizing application performance and resource utilization, while minimizing the risk of sudden service disruptions.
-
Historical Performance Trend Analysis: Store the metrics gathered by the IPVS plugin in a time-series database for historical analysis. By analyzing trends over time, organizations can identify patterns in server performance, correlate them with application usage spikes, and make informed decisions regarding infrastructure upgrades or maintenance schedules to better handle peak loads.
OSI PI
-
Remote Pump Stations Telemetry Bridge: Install Telegraf on edge gateways at oil-field pump stations, gather flow-meter and vibration readings over Modbus, and POST them to the PI Web API. Operations teams view real-time data in PI Vision without deploying heavyweight PI interfaces, while bandwidth-friendly batching keeps satellite links economical.
-
Green-Energy Micro-Grid Dashboard: Export inverter, battery, and weather metrics from MQTT into Telegraf, which relays them to PI. PI AF analytics can calculate real-time power balance and feed a campus dashboard; historical deltas inform sustainability reports.
-
Brownfield SCADA Modernization: Legacy PLCs logged to CSV are ingested by Telegraf’s
tail
input; each row is parsed and immediately sent to PI via HTTP, creating a live data stream that co-exists with archival files while the SCADA upgrade proceeds incrementally. -
Synthetic Data Generator for Training: Telegraf’s
exec
input can run a script that emits simulated sensor patterns. Posting those metrics to a non-production PI server through the Web API supplies realistic datasets for PI Vision training sessions without risking production tags.
Feedback
Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Related Integrations
Related Integrations
HTTP and InfluxDB Integration
The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.
View IntegrationKafka and InfluxDB Integration
This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.
View IntegrationKinesis and InfluxDB Integration
The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.
View Integration