Jenkins and Nebius Cloud Monitoring Integration

Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.

info

This is not the recommended configuration for real-time query at scale. For query and compression optimization, high-speed ingest, and high availability, you may want to consider Jenkins and InfluxDB.

5B+

Telegraf downloads

#1

Time series database
Source: DB Engines

1B+

Downloads of InfluxDB

2,800+

Contributors

Table of Contents

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Input and output integration overview

The Jenkins plugin collects vital information regarding jobs and nodes from a Jenkins instance through its API, facilitating comprehensive monitoring and analysis.

This plugin allows users to effortlessly send aggregated metrics to Nebius Cloud Monitoring, leveraging the cloud’s monitoring solutions.

Integration details

Jenkins

The Jenkins Telegraf plugin allows users to gather metrics from a Jenkins instance without needing to install any additional plugins on Jenkins itself. By utilizing the Jenkins API, the plugin retrieves information about nodes and jobs running in the Jenkins environment. This integration provides a comprehensive overview of the Jenkins infrastructure, including real-time metrics that can be used for monitoring and analysis. Key features include configurable filters for job and node selection, optional TLS security settings, and the ability to manage request timeouts and connection limits effectively. This makes it an essential tool for teams that rely on Jenkins for continuous integration and delivery, ensuring they have the insights they need to maintain optimal performance and reliability.

Nebius Cloud Monitoring

The Nebius Cloud Monitoring plugin serves as an intermediary to send custom metrics to the Nebius Cloud Monitoring service. It is designed specifically to facilitate the monitoring of applications and services running within the Nebius ecosystem. This plugin is especially useful for users of the Nebius Cloud Platform who need to leverage cloud-based monitoring capabilities without significant configuration overhead. The plugin’s integration relies on Google Cloud metadata, allowing it to automatically fetch the necessary authentication credentials from the Compute instance it operates within. Key technical considerations include the management of reserved labels to ensure metrics are recorded correctly without conflicts.

Configuration

Jenkins

[[inputs.jenkins]]
  ## The Jenkins URL in the format "schema://host:port"
  url = "http://my-jenkins-instance:8080"
  # username = "admin"
  # password = "admin"

  ## Set response_timeout
  response_timeout = "5s"

  ## Optional TLS Config
  # tls_ca = "/etc/telegraf/ca.pem"
  # tls_cert = "/etc/telegraf/cert.pem"
  # tls_key = "/etc/telegraf/key.pem"
  ## Use SSL but skip chain & host verification
  # insecure_skip_verify = false

  ## Optional Max Job Build Age filter
  ## Default 1 hour, ignore builds older than max_build_age
  # max_build_age = "1h"

  ## Optional Sub Job Depth filter
  ## Jenkins can have unlimited layer of sub jobs
  ## This config will limit the layers of pulling, default value 0 means
  ## unlimited pulling until no more sub jobs
  # max_subjob_depth = 0

  ## Optional Sub Job Per Layer
  ## In workflow-multibranch-plugin, each branch will be created as a sub job.
  ## This config will limit to call only the lasted branches in each layer,
  ## empty will use default value 10
  # max_subjob_per_layer = 10

  ## Jobs to include or exclude from gathering
  ## When using both lists, job_exclude has priority.
  ## Wildcards are supported: [ "jobA/*", "jobB/subjob1/*"]
  # job_include = [ "*" ]
  # job_exclude = [ ]

  ## Nodes to include or exclude from gathering
  ## When using both lists, node_exclude has priority.
  # node_include = [ "*" ]
  # node_exclude = [ ]

  ## Worker pool for jenkins plugin only
  ## Empty this field will use default value 5
  # max_connections = 5

  ## When set to true will add node labels as a comma-separated tag. If none,
  ## are found, then a tag with the value of 'none' is used. Finally, if a
  ## label contains a comma it is replaced with an underscore.
  # node_labels_as_tag = false

Nebius Cloud Monitoring

[[outputs.nebius_cloud_monitoring]]
  ## Timeout for HTTP writes.
  # timeout = "20s"

  ## Nebius.Cloud monitoring API endpoint. Normally should not be changed
  # endpoint = "https://monitoring.api.il.nebius.cloud/monitoring/v2/data/write"

Input and output integration examples

Jenkins

  1. Continuous Integration Monitoring: Use the Jenkins plugin to monitor the performance of continuous integration pipelines by collecting metrics on job durations and failure rates. This can help teams identify bottlenecks in the pipeline and improve overall build efficiency.

  2. Resource Allocation Analysis: Leverage Jenkins node metrics to assess resource usage across different agents. By understanding how resources are allocated, teams can optimize their Jenkins architecture, potentially reallocating agents or adjusting job configurations for better performance.

  3. Job Execution Trends: Analyze historical job performance metrics to identify trends in job execution over time. With this data, teams can proactively address potential issues before they grow, making adjustments to the jobs or their configurations as needed.

  4. Alerting for Job Failures: Implement alerts that leverage the Jenkins job metrics to notify team members in case of job failures. This proactive approach can enhance operational awareness and speed up response times to failures, ensuring that critical jobs are monitored effectively.

Nebius Cloud Monitoring

  1. Dynamic Application Monitoring: Integrate this plugin with your application to continuously send metrics related to resource usage, such as CPU and memory utilization, to Nebius Cloud Monitoring. By doing so, you can gain insights into the performance of your application, allowing for adjustments in real-time based on the metrics received.

  2. Incident Response Automation: Use the Nebius Cloud Monitoring plugin to automatically send alerts and metrics when certain thresholds are reached. For instance, if a particular service’s uptime drops below a certain percentage, the plugin can be configured to report this directly to the monitoring service, enabling quicker incident response and resolution.

  3. Comparative Service Analysis: Set up the plugin to send metrics from multiple cloud instances running different versions of the same application to Nebius Cloud Monitoring. This approach allows for a comparative analysis of resource usage and performance, helping teams determine which version performs best under similar workloads.

  4. Aggregated Metrics Dashboard: Use this plugin to create a centralized dashboard displaying metrics from various services across your cloud instances. By aggregating different application metrics into one interface, stakeholders can assess the overall health and performance of their cloud environment easily.

Feedback

Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Related Integrations

HTTP and InfluxDB Integration

The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.

View Integration

Kafka and InfluxDB Integration

This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.

View Integration

Kinesis and InfluxDB Integration

The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.

View Integration