JTI OpenConfig Telemetry and PostgreSQL Integration

Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.

info

This is not the recommended configuration for real-time query at scale. For query and compression optimization, high-speed ingest, and high availability, you may want to consider JIT OpenConfig Telemetry and InfluxDB.

5B+

Telegraf downloads

#1

Time series database
Source: DB Engines

1B+

Downloads of InfluxDB

2,800+

Contributors

Table of Contents

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Input and output integration overview

The JTI OpenConfig Telemetry plugin allows users to collect real-time telemetry data from devices running Juniper’s implementation of the OpenConfig model, leveraging the Junos Telemetry Interface for efficient data retrieval.

The Telegraf PostgreSQL plugin allows you to efficiently write metrics to a PostgreSQL database while automatically managing the database schema.

Integration details

JTI OpenConfig Telemetry

This plugin reads data from Juniper Networks’ OpenConfig telemetry implementation using the Junos Telemetry Interface (JTI). OpenConfig is an initiative aimed at enabling standardized and open network device telemetry through a common model for various devices and protocols. The JTI allows for the collection of this telemetry data in a real-time manner from various sensors defined within the configuration. Configurable parameters for this plugin include the ability to specify device addresses, authentication credentials, sampling frequency, and multiple sensors with potentially different reporting rates. The plugin uniquely handles time-stamping either through the collection time or the timestamp provided in the data, allowing for flexibility in how data is processed. Given its support for TLS for secure communication, the plugin is well-suited for integration into both traditional and modern network management systems, enhancing visibility into network performance and reliability.

PostgreSQL

The PostgreSQL plugin enables users to write metrics to a PostgreSQL database or a compatible database, providing robust support for schema management by automatically updating missing columns. The plugin is designed to facilitate integration with monitoring solutions, allowing users to efficiently store and manage time series data. It offers configurable options for connection settings, concurrency, and error handling, and supports advanced features such as JSONB storage for tags and fields, foreign key tagging, templated schema modifications, and support for unsigned integer data types through the pguint extension.

Configuration

JTI OpenConfig Telemetry

[[inputs.jti_openconfig_telemetry]]
  ## List of device addresses to collect telemetry from
  servers = ["localhost:1883"]

  ## Authentication details. Username and password are must if device expects
  ## authentication. Client ID must be unique when connecting from multiple instances
  ## of telegraf to the same device
  username = "user"
  password = "pass"
  client_id = "telegraf"

  ## Frequency to get data
  sample_frequency = "1000ms"

  ## Sensors to subscribe for
  ## A identifier for each sensor can be provided in path by separating with space
  ## Else sensor path will be used as identifier
  ## When identifier is used, we can provide a list of space separated sensors.
  ## A single subscription will be created with all these sensors and data will
  ## be saved to measurement with this identifier name
  sensors = [
   "/interfaces/",
   "collection /components/ /lldp",
  ]

  ## We allow specifying sensor group level reporting rate. To do this, specify the
  ## reporting rate in Duration at the beginning of sensor paths / collection
  ## name. For entries without reporting rate, we use configured sample frequency
  sensors = [
   "1000ms customReporting /interfaces /lldp",
   "2000ms collection /components",
   "/interfaces",
  ]

  ## Timestamp Source
  ## Set to 'collection' for time of collection, and 'data' for using the time
  ## provided by the _timestamp field.
  # timestamp_source = "collection"

  ## Optional TLS Config
  # enable_tls = false
  # tls_ca = "/etc/telegraf/ca.pem"
  # tls_cert = "/etc/telegraf/cert.pem"
  # tls_key = "/etc/telegraf/key.pem"
  ## Minimal TLS version to accept by the client
  # tls_min_version = "TLS12"
  ## Use TLS but skip chain & host verification
  # insecure_skip_verify = false

  ## Delay between retry attempts of failed RPC calls or streams. Defaults to 1000ms.
  ## Failed streams/calls will not be retried if 0 is provided
  retry_delay = "1000ms"

  ## Period for sending keep-alive packets on idle connections
  ## This is helpful to identify broken connections to the server
  # keep_alive_period = "10s"

  ## To treat all string values as tags, set this to true
  str_as_tags = false

PostgreSQL

# Publishes metrics to a postgresql database
[[outputs.postgresql]]
  ## Specify connection address via the standard libpq connection string:
  ##   host=... user=... password=... sslmode=... dbname=...
  ## Or a URL:
  ##   postgres://[user[:password]]@localhost[/dbname]?sslmode=[disable|verify-ca|verify-full]
  ## See https://www.postgresql.org/docs/current/libpq-connect.html#LIBPQ-CONNSTRING
  ##
  ## All connection parameters are optional. Environment vars are also supported.
  ## e.g. PGPASSWORD, PGHOST, PGUSER, PGDATABASE
  ## All supported vars can be found here:
  ##  https://www.postgresql.org/docs/current/libpq-envars.html
  ##
  ## Non-standard parameters:
  ##   pool_max_conns (default: 1) - Maximum size of connection pool for parallel (per-batch per-table) inserts.
  ##   pool_min_conns (default: 0) - Minimum size of connection pool.
  ##   pool_max_conn_lifetime (default: 0s) - Maximum age of a connection before closing.
  ##   pool_max_conn_idle_time (default: 0s) - Maximum idle time of a connection before closing.
  ##   pool_health_check_period (default: 0s) - Duration between health checks on idle connections.
  # connection = ""

  ## Postgres schema to use.
  # schema = "public"

  ## Store tags as foreign keys in the metrics table. Default is false.
  # tags_as_foreign_keys = false

  ## Suffix to append to table name (measurement name) for the foreign tag table.
  # tag_table_suffix = "_tag"

  ## Deny inserting metrics if the foreign tag can't be inserted.
  # foreign_tag_constraint = false

  ## Store all tags as a JSONB object in a single 'tags' column.
  # tags_as_jsonb = false

  ## Store all fields as a JSONB object in a single 'fields' column.
  # fields_as_jsonb = false

  ## Name of the timestamp column
  ## NOTE: Some tools (e.g. Grafana) require the default name so be careful!
  # timestamp_column_name = "time"

  ## Type of the timestamp column
  ## Currently, "timestamp without time zone" and "timestamp with time zone"
  ## are supported
  # timestamp_column_type = "timestamp without time zone"

  ## Templated statements to execute when creating a new table.
  # create_templates = [
  #   '''CREATE TABLE {{ .table }} ({{ .columns }})''',
  # ]

  ## Templated statements to execute when adding columns to a table.
  ## Set to an empty list to disable. Points containing tags for which there is no column will be skipped. Points
  ## containing fields for which there is no column will have the field omitted.
  # add_column_templates = [
  #   '''ALTER TABLE {{ .table }} ADD COLUMN IF NOT EXISTS {{ .columns|join ", ADD COLUMN IF NOT EXISTS " }}''',
  # ]

  ## Templated statements to execute when creating a new tag table.
  # tag_table_create_templates = [
  #   '''CREATE TABLE {{ .table }} ({{ .columns }}, PRIMARY KEY (tag_id))''',
  # ]

  ## Templated statements to execute when adding columns to a tag table.
  ## Set to an empty list to disable. Points containing tags for which there is no column will be skipped.
  # tag_table_add_column_templates = [
  #   '''ALTER TABLE {{ .table }} ADD COLUMN IF NOT EXISTS {{ .columns|join ", ADD COLUMN IF NOT EXISTS " }}''',
  # ]

  ## The postgres data type to use for storing unsigned 64-bit integer values (Postgres does not have a native
  ## unsigned 64-bit integer type).
  ## The value can be one of:
  ##   numeric - Uses the PostgreSQL "numeric" data type.
  ##   uint8 - Requires pguint extension (https://github.com/petere/pguint)
  # uint64_type = "numeric"

  ## When using pool_max_conns>1, and a temporary error occurs, the query is retried with an incremental backoff. This
  ## controls the maximum backoff duration.
  # retry_max_backoff = "15s"

  ## Approximate number of tag IDs to store in in-memory cache (when using tags_as_foreign_keys).
  ## This is an optimization to skip inserting known tag IDs.
  ## Each entry consumes approximately 34 bytes of memory.
  # tag_cache_size = 100000

  ## Enable & set the log level for the Postgres driver.
  # log_level = "warn" # trace, debug, info, warn, error, none

Input and output integration examples

JTI OpenConfig Telemetry

  1. Network Performance Monitoring: Use the JTI OpenConfig Telemetry plugin to monitor network performance metrics from multiple Juniper devices in real-time. By configuring various sensors, operators can gain insights into interface performance, traffic patterns, and error rates, allowing for proactive troubleshooting and optimization of the network.

  2. Automated Fault Detection: Integrate the telemetry data collected via this plugin with a fault detection system that triggers alerts based on predefined thresholds. For example, when a specific sensor indicates a fault or threshold breach, automated scripts can be initiated to remediate the situation, dramatically improving response times.

  3. Historical Performance Analysis: By forwarding the collected telemetry data into a time-series database, organizations can perform historical analysis on network performance. This enables teams to identify trends over time, spot anomalies, and make more informed decisions regarding network capacity planning and resource allocation.

  4. Real-Time Dashboards for Network Operations: Leverage the real-time data gathered through this plugin to power visualization dashboards that provide network operators with live insights into performance metrics. This facilitates better operational awareness and quicker decision-making during critical events.

PostgreSQL

  1. Real-Time Analytics with Complex Queries: Leverage the PostgreSQL plugin to store metrics from various sources in a PostgreSQL database, enabling real-time analytics using complex queries. This setup can help data scientists and analysts uncover patterns and trends, as they manipulate relational data across multiple tables while utilizing PostgreSQL’s robust query optimization features. Specifically, users can create sophisticated reports with JOIN operations across different metric tables, revealing insights that would typically remain hidden in embedded systems.

  2. Integrating with TimescaleDB for Time-Series Data: Utilize the PostgreSQL plugin within a TimescaleDB instance to efficiently handle and analyze time-series data. By implementing hypertables, users can achieve greater performance and partitioning of topics over the time dimension. This integration allows users to run analytical queries over large amounts of time-series data while retaining the full power of PostgreSQL’s SQL queries, ensuring reliability and efficiency in metrics analysis.

  3. Data Versioning and Historical Analysis: Implement a strategy using the PostgreSQL plugin to maintain different versions of metrics over time. Users can set up an immutable data table structure where older versions of tables are retained, enabling easy historical analysis. This approach not only provides insights into data evolution but also aids compliance with data retention policies, ensuring that the historical integrity of the datasets remains intact.

  4. Dynamic Schema Management for Evolving Metrics: Use the plugin’s templating capabilities to create a dynamically changing schema that responds to metric variations. This use case allows organizations to adapt their data structure as metrics evolve, adding necessary fields and ensuring adherence to data integrity policies. By leveraging templated SQL commands, users can extend their database without manual intervention, facilitating agile data management practices.

Feedback

Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Related Integrations

HTTP and InfluxDB Integration

The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.

View Integration

Kafka and InfluxDB Integration

This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.

View Integration

Kinesis and InfluxDB Integration

The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.

View Integration