JTI OpenConfig Telemetry and TimescaleDB Integration
Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.
5B+
Telegraf downloads
#1
Time series database
Source: DB Engines
1B+
Downloads of InfluxDB
2,800+
Contributors
Table of Contents
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Input and output integration overview
The JTI OpenConfig Telemetry plugin allows users to collect real-time telemetry data from devices running Juniper’s implementation of the OpenConfig model, leveraging the Junos Telemetry Interface for efficient data retrieval.
This output plugin delivers a reliable and efficient mechanism for routing Telegraf collected metrics directly into TimescaleDB. By leveraging PostgreSQL’s robust ecosystem combined with TimescaleDB’s time series optimizations, it supports high-performance data ingestion and advanced querying capabilities.
Integration details
JTI OpenConfig Telemetry
This plugin reads data from Juniper Networks’ OpenConfig telemetry implementation using the Junos Telemetry Interface (JTI). OpenConfig is an initiative aimed at enabling standardized and open network device telemetry through a common model for various devices and protocols. The JTI allows for the collection of this telemetry data in a real-time manner from various sensors defined within the configuration. Configurable parameters for this plugin include the ability to specify device addresses, authentication credentials, sampling frequency, and multiple sensors with potentially different reporting rates. The plugin uniquely handles time-stamping either through the collection time or the timestamp provided in the data, allowing for flexibility in how data is processed. Given its support for TLS for secure communication, the plugin is well-suited for integration into both traditional and modern network management systems, enhancing visibility into network performance and reliability.
TimescaleDB
TimescaleDB is an open source time series database built as an extension to PostgreSQL, designed to handle large scale, time-oriented data efficiently. Launched in 2017, TimescaleDB emerged in response to the growing need for a robust, scalable solution that could manage vast volumes of data with high insert rates and complex queries. By leveraging PostgreSQL’s familiar SQL interface and enhancing it with specialized time series capabilities, TimescaleDB quickly gained popularity among developers looking to integrate time series functionality into existing relational databases. Its hybrid approach allows users to benefit from PostgreSQL’s flexibility, reliability, and ecosystem while providing optimized performance for time series data.
The database is particularly effective in environments that demand fast ingestion of data points combined with sophisticated analytical queries over historical periods. TimescaleDB has a number of innovative features like hypertables which transparently partition data into manageable chunks and built-in continuous aggregation. These allow for significantly improved query speed and resource efficiency.
Configuration
JTI OpenConfig Telemetry
[[inputs.jti_openconfig_telemetry]]
## List of device addresses to collect telemetry from
servers = ["localhost:1883"]
## Authentication details. Username and password are must if device expects
## authentication. Client ID must be unique when connecting from multiple instances
## of telegraf to the same device
username = "user"
password = "pass"
client_id = "telegraf"
## Frequency to get data
sample_frequency = "1000ms"
## Sensors to subscribe for
## A identifier for each sensor can be provided in path by separating with space
## Else sensor path will be used as identifier
## When identifier is used, we can provide a list of space separated sensors.
## A single subscription will be created with all these sensors and data will
## be saved to measurement with this identifier name
sensors = [
"/interfaces/",
"collection /components/ /lldp",
]
## We allow specifying sensor group level reporting rate. To do this, specify the
## reporting rate in Duration at the beginning of sensor paths / collection
## name. For entries without reporting rate, we use configured sample frequency
sensors = [
"1000ms customReporting /interfaces /lldp",
"2000ms collection /components",
"/interfaces",
]
## Timestamp Source
## Set to 'collection' for time of collection, and 'data' for using the time
## provided by the _timestamp field.
# timestamp_source = "collection"
## Optional TLS Config
# enable_tls = false
# tls_ca = "/etc/telegraf/ca.pem"
# tls_cert = "/etc/telegraf/cert.pem"
# tls_key = "/etc/telegraf/key.pem"
## Minimal TLS version to accept by the client
# tls_min_version = "TLS12"
## Use TLS but skip chain & host verification
# insecure_skip_verify = false
## Delay between retry attempts of failed RPC calls or streams. Defaults to 1000ms.
## Failed streams/calls will not be retried if 0 is provided
retry_delay = "1000ms"
## Period for sending keep-alive packets on idle connections
## This is helpful to identify broken connections to the server
# keep_alive_period = "10s"
## To treat all string values as tags, set this to true
str_as_tags = false
TimescaleDB
# Publishes metrics to a TimescaleDB database
[[outputs.postgresql]]
## Specify connection address via the standard libpq connection string:
## host=... user=... password=... sslmode=... dbname=...
## Or a URL:
## postgres://[user[:password]]@localhost[/dbname]?sslmode=[disable|verify-ca|verify-full]
## See https://www.postgresql.org/docs/current/libpq-connect.html#LIBPQ-CONNSTRING
##
## All connection parameters are optional. Environment vars are also supported.
## e.g. PGPASSWORD, PGHOST, PGUSER, PGDATABASE
## All supported vars can be found here:
## https://www.postgresql.org/docs/current/libpq-envars.html
##
## Non-standard parameters:
## pool_max_conns (default: 1) - Maximum size of connection pool for parallel (per-batch per-table) inserts.
## pool_min_conns (default: 0) - Minimum size of connection pool.
## pool_max_conn_lifetime (default: 0s) - Maximum connection age before closing.
## pool_max_conn_idle_time (default: 0s) - Maximum idle time of a connection before closing.
## pool_health_check_period (default: 0s) - Duration between health checks on idle connections.
# connection = ""
## Postgres schema to use.
# schema = "public"
## Store tags as foreign keys in the metrics table. Default is false.
# tags_as_foreign_keys = false
## Suffix to append to table name (measurement name) for the foreign tag table.
# tag_table_suffix = "_tag"
## Deny inserting metrics if the foreign tag can't be inserted.
# foreign_tag_constraint = false
## Store all tags as a JSONB object in a single 'tags' column.
# tags_as_jsonb = false
## Store all fields as a JSONB object in a single 'fields' column.
# fields_as_jsonb = false
## Name of the timestamp column
## NOTE: Some tools (e.g. Grafana) require the default name so be careful!
# timestamp_column_name = "time"
## Type of the timestamp column
## Currently, "timestamp without time zone" and "timestamp with time zone"
## are supported
# timestamp_column_type = "timestamp without time zone"
## Templated statements to execute when creating a new table.
# create_templates = [
# '''CREATE TABLE {{ .table }} ({{ .columns }})''',
# ]
## Templated statements to execute when adding columns to a table.
## Set to an empty list to disable. Points containing tags for which there is
## no column will be skipped. Points containing fields for which there is no
## column will have the field omitted.
# add_column_templates = [
# '''ALTER TABLE {{ .table }} ADD COLUMN IF NOT EXISTS {{ .columns|join ", ADD COLUMN IF NOT EXISTS " }}''',
# ]
## Templated statements to execute when creating a new tag table.
# tag_table_create_templates = [
# '''CREATE TABLE {{ .table }} ({{ .columns }}, PRIMARY KEY (tag_id))''',
# ]
## Templated statements to execute when adding columns to a tag table.
## Set to an empty list to disable. Points containing tags for which there is
## no column will be skipped.
# tag_table_add_column_templates = [
# '''ALTER TABLE {{ .table }} ADD COLUMN IF NOT EXISTS {{ .columns|join ", ADD COLUMN IF NOT EXISTS " }}''',
# ]
## The postgres data type to use for storing unsigned 64-bit integer values
## (Postgres does not have a native unsigned 64-bit integer type).
## The value can be one of:
## numeric - Uses the PostgreSQL "numeric" data type.
## uint8 - Requires pguint extension (https://github.com/petere/pguint)
# uint64_type = "numeric"
## When using pool_max_conns > 1, and a temporary error occurs, the query is
## retried with an incremental backoff. This controls the maximum duration.
# retry_max_backoff = "15s"
## Approximate number of tag IDs to store in in-memory cache (when using
## tags_as_foreign_keys). This is an optimization to skip inserting known
## tag IDs. Each entry consumes approximately 34 bytes of memory.
# tag_cache_size = 100000
## Cut column names at the given length to not exceed PostgreSQL's
## 'identifier length' limit (default: no limit)
## (see https://www.postgresql.org/docs/current/limits.html)
## Be careful to not create duplicate column names!
# column_name_length_limit = 0
## Enable & set the log level for the Postgres driver.
# log_level = "warn" # trace, debug, info, warn, error, none
Input and output integration examples
JTI OpenConfig Telemetry
-
Network Performance Monitoring: Use the JTI OpenConfig Telemetry plugin to monitor network performance metrics from multiple Juniper devices in real-time. By configuring various sensors, operators can gain insights into interface performance, traffic patterns, and error rates, allowing for proactive troubleshooting and optimization of the network.
-
Automated Fault Detection: Integrate the telemetry data collected via this plugin with a fault detection system that triggers alerts based on predefined thresholds. For example, when a specific sensor indicates a fault or threshold breach, automated scripts can be initiated to remediate the situation, dramatically improving response times.
-
Historical Performance Analysis: By forwarding the collected telemetry data into a time-series database, organizations can perform historical analysis on network performance. This enables teams to identify trends over time, spot anomalies, and make more informed decisions regarding network capacity planning and resource allocation.
-
Real-Time Dashboards for Network Operations: Leverage the real-time data gathered through this plugin to power visualization dashboards that provide network operators with live insights into performance metrics. This facilitates better operational awareness and quicker decision-making during critical events.
TimescaleDB
-
Real-Time IoT Data Ingestion: Use the plugin to collect and store sensor data from thousands of IoT devices in real time. This setup facilitates immediate analysis, helping organizations monitor operational efficiency and respond quickly to changing conditions.
-
Cloud Application Performance Monitoring: Leverage the plugin to feed detailed performance metrics from distributed cloud applications into TimescaleDB. This integration supports real-time dashboards and alerts, enabling teams to swiftly identify and mitigate performance bottlenecks.
-
Historical Data Analysis and Reporting: Implement a system where long-term metrics are stored in TimescaleDB for comprehensive historical analysis. This approach allows businesses to perform trend analysis, generate detailed reports, and make data-driven decisions based on archived time-series data.
-
Adaptive Alerting and Anomaly Detection: Integrate the plugin with automated anomaly detection workflows. By continuously streaming metrics to TimescaleDB, machine learning models can analyze data patterns and trigger alerts when anomalies occur, enhancing system reliability and proactive maintenance.
Feedback
Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Related Integrations
Related Integrations
HTTP and InfluxDB Integration
The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.
View IntegrationKafka and InfluxDB Integration
This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.
View IntegrationKinesis and InfluxDB Integration
The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.
View Integration