Kernel and SigNoz Integration
Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.
5B+
Telegraf downloads
#1
Time series database
Source: DB Engines
1B+
Downloads of InfluxDB
2,800+
Contributors
Table of Contents
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Input and output integration overview
The Kernel plugin collects various statistics about the Linux kernel, including context switches, page usage, and entropy availability.
This configuration turns any Telegraf agent into a Remote Write publisher for SigNoz, streaming rich metrics straight into the SigNoz backend with a single URL change.
Integration details
Kernel
The Kernel plugin is designed exclusively for Linux systems and gathers essential kernel statistics that are not covered by other plugins. It primarily focuses on the metrics available in /proc/stat
, as well as the entropy available from /proc/sys/kernel/random/entropy_avail
. Additional functionalities include the capture of Kernel Samepage Merging (KSM) data and Pressure Stall Information (PSI), requiring Linux kernel version 4.20 or later. This plugin provides a comprehensive look into system behaviors, enabling better understanding and optimization of resource management and usage. The metrics it collects are critical for monitoring system health and performance.
SigNoz
SigNoz is an open source observability platform that stores metrics, traces, and logs. When you deploy SigNoz, its signoz-otel-collector-metrics service exposes a Prometheus Remote Write receiver (default :13133/api/v1/write). By configuring Telegraf’s Prometheus plugin to point at this endpoint, you can push any Telegraf collected metrics, SNMP counters, cloud services, or business KPIs—directly into SigNoz. The plugin natively serializes metrics in the Remote Write protobuf format, supports external labels, metadata export, retries, and TLS or bearer-token auth, so it fits zero-trust and multi-tenant SigNoz clusters. Inside SigNoz, the data lands in ClickHouse tables that back Metrics Explorer, alert rules, and unified dashboards. This approach lets organizations unify Prometheus and OTLP pipelines, enables long-term retention powered by ClickHouse compression, and avoids vendor lock-in while retaining PromQL-style queries.
Configuration
Kernel
[[inputs.kernel]]
## Additional gather options
## Possible options include:
## * ksm - kernel same-page merging
## * psi - pressure stall information
# collect = []
SigNoz
[[outputs.prometheusremotewrite]]
## SigNoz OTEL-Collector metrics endpoint (Prometheus Remote Write receiver)
## Default port is 13133 when you install SigNoz with the Helm chart
url = "http://signoz-otel-collector-metrics.monitoring.svc.cluster.local:13133/api/v1/write"
## Add identifying labels so you can slice & dice the data later
external_labels = { host = "${HOSTNAME}", agent = "telegraf" }
## Forward host metadata for richer dashboards (SigNoz maps these to ClickHouse columns)
send_metadata = true
## ----- Authentication (comment out what you don’t need) -----
# bearer_token = "$SIGNOZ_TOKEN" # SaaS tenant token
# basic_username = "signoz" # Basic auth (self-hosted)
# basic_password = "secret"
## ----- TLS options (for SaaS or HTTPS self-hosted) -----
# tls_ca = "/etc/ssl/certs/ca.crt"
# tls_cert = "/etc/telegraf/certs/telegraf.crt"
# tls_key = "/etc/telegraf/certs/telegraf.key"
# insecure_skip_verify = false
## ----- Performance tuning -----
max_batch_size = 10000 # samples per POST
timeout = "10s"
retry_max = 3
Input and output integration examples
Kernel
-
Memory Optimization through KSM: Utilize the KSM capabilities of this plugin to monitor memory usage patterns in your applications and dynamically adjust the memory allocation strategy based on shared page usage metrics. By analyzing the data collected, you can identify opportunities for consolidating memory and optimizing performance without manual intervention.
-
Real-time System Health Monitoring: Integrate the metrics collected by the Kernel plugin into a real-time dashboard that visualizes key kernel statistics including context switches, interrupts, and entropy availability. This setup allows system administrators to proactively respond to performance issues before they escalate into critical failures, ensuring smooth operation of Linux servers.
-
Enhanced Anomaly Detection: Combine the data from this plugin with machine learning models to predict and detect anomalies in kernel behavior. By continuously monitoring metrics like process forking rates and entropy levels, you can implement an adaptive alerting system that triggers on performance anomalies, allowing for quick responses to potential issues.
-
Resource Usage Patterns Analysis: Use the Pressure Stall Information collected by the plugin to analyze resource usage patterns over time and identify potential bottlenecks under load conditions. By adjusting application performance based on the PSI metrics, you can improve overall resource management and maintain service reliability under varying workloads.
SigNoz
-
Multi-Cluster Federated Monitoring: Drop a Telegraf DaemonSet into each Kubernetes cluster, tag metrics with
cluster=<name>
, and Remote Write them to a central SigNoz instance. Ops teams get a single PromQL window across prod, staging, and edge clusters without running Thanos sidecars. -
Factory-Floor Edge Gateway: A rugged Intel NUC on the shop floor runs Telegraf to scrape Modbus PLCs and environmental sensors. It batches readings every 5 seconds and pushes them over an intermittent 4G link to SigNoz SaaS. ClickHouse compression keeps costs low while AI-based outlier detection in SigNoz flags overheating motors before failure.
-
SaaS Usage Metering: Telegraf runs alongside each micro-service, exporting per-tenant counters (
api_calls
,gigabytes_processed
). Remote Write streams the data to SigNoz where a scheduled ClickHouse materialized view aggregates usage for monthly billing—no separate metering stack required. -
Autoscaling Feedback Loop: Combine Telegraf’s Kubernetes input with the Remote Write output to publish granular pod CPU and queue-length metrics into SigNoz. A custom SigNoz alert fires when P95 latency breaches 200 ms and a GitOps controller reads that alert to trigger a HorizontalPodAutoscaler tweak—closing the loop between observability and automation.
Feedback
Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Related Integrations
Related Integrations
HTTP and InfluxDB Integration
The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.
View IntegrationKafka and InfluxDB Integration
This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.
View IntegrationKinesis and InfluxDB Integration
The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.
View Integration