KNX and CrateDB Integration

Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.

info

This is not the recommended configuration for real-time query at scale. For query and compression optimization, high-speed ingest, and high availability, you may want to consider using the KNX plugin with InfluxDB.

5B+

Telegraf downloads

#1

Time series database
Source: DB Engines

1B+

Downloads of InfluxDB

2,800+

Contributors

Table of Contents

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Input and output integration overview

The KNX plugin listens for messages from the KNX home-automation bus via a KNX-IP interface, allowing for real-time data integration from KNX-enabled devices.

The CrateDB plugin facilitates the writing of metrics to a CrateDB database, leveraging its PostgreSQL-compatible protocol to ensure a seamless experience for users.

Integration details

KNX

The KNX plugin allows for the listening to messages transmitted over the KNX home-automation bus. It establishes a connection with the KNX bus through a KNX-IP interface, making it compatible with various message datapoint types that KNX employs. The plugin supports service input configuration, wherein it remains active to listen for relevant metrics or events rather than relying solely on scheduled intervals. This inherent characteristic enables real-time data capture from the KNX systems, enhancing automation and integration possibilities for building management and smart home applications. Additionally, this plugin is designed to handle multiple measurements from the KNX data, allowing for a flexible categorization of metrics based on the derived datapoint types, thus broadening the scope of data integration in smart environments.

CrateDB

This plugin writes to CrateDB via its PostgreSQL protocol, allowing for metrics to be efficiently stored in a scalable database. CrateDB is designed for high-speed analytics, supporting time-series data and complicated queries, making it ideal for applications that require fast ingestion and analysis of large datasets. By utilizing the PostgreSQL protocol, the CrateDB output plugin ensures compatibility with existing PostgreSQL client libraries and tools, enabling a smooth integration for users who are already familiar with PostgreSQL’s ecosystem. The plugin provides options such as automatic table creation, connection parameters, and query timeouts, offering flexibility in how metrics are handled and stored within the database.

Configuration

KNX

[[inputs.knx_listener]]
  ## Type of KNX-IP interface.
  ## Can be either "tunnel_udp", "tunnel_tcp", "tunnel" (alias for tunnel_udp) or "router".
  # service_type = "tunnel"

  ## Address of the KNX-IP interface.
  service_address = "localhost:3671"

  ## Measurement definition(s)
  # [[inputs.knx_listener.measurement]]
  #   ## Name of the measurement
  #   name = "temperature"
  #   ## Datapoint-Type (DPT) of the KNX messages
  #   dpt = "9.001"
  #   ## Use the string representation instead of the numerical value for the
  #   ## datapoint-type and the addresses below
  #   # as_string = false
  #   ## List of Group-Addresses (GAs) assigned to the measurement
  #   addresses = ["5/5/1"]

  # [[inputs.knx_listener.measurement]]
  #   name = "illumination"
  #   dpt = "9.004"
  #   addresses = ["5/5/3"]

CrateDB

[[outputs.cratedb]]
  ## Connection parameters for accessing the database see
  ##   https://pkg.go.dev/github.com/jackc/pgx/v4#ParseConfig
  ## for available options
  url = "postgres://user:password@localhost/schema?sslmode=disable"

  ## Timeout for all CrateDB queries.
  # timeout = "5s"

  ## Name of the table to store metrics in.
  # table = "metrics"

  ## If true, and the metrics table does not exist, create it automatically.
  # table_create = false

  ## The character(s) to replace any '.' in an object key with
  # key_separator = "_"

Input and output integration examples

KNX

  1. Smart Home Energy Monitoring: Utilize the KNX plugin to monitor energy consumption across various devices in a smart home setup. By configuring measurements for different appliances, users can gather real-time data on power usage, enabling them to optimize energy consumption and reduce costs. This setup can also integrate with visualization tools to provide insights into energy trends and usage patterns.

  2. Automated Lighting Control System: Leverage this plugin to listen for lighting status updates from KNX sensors in a building. By capturing measurements related to illumination, users can develop an automated lighting control system that adjusts the brightness based on the time of day or occupancy, enhancing comfort and energy efficiency.

  3. HVAC Performance Tracking: Implement the KNX plugin to track temperature and ventilation data across different zones in a building. By monitoring these metrics, facilities managers can identify trends in HVAC performance, optimize climate control strategies, and proactively address maintenance needs to ensure consistent environmental quality.

  4. Integrated Security Solutions: Use the plugin to capture data from KNX security sensors, such as door/window open/close statuses. This information can be routed into a central monitoring system, providing real-time alerts and enabling automated responses, such as locking doors or activating alarms, thus enhancing the building’s security posture.

CrateDB

  1. Real-Time Analytics for IoT Devices: Collect and store metrics from thousands of IoT devices. By setting up a dynamic metrics table for each device, users can perform real-time analytics on the collected data, enabling quick insights into device performance, patterns, and potential failures. This setup benefits from CrateDB’s ability to handle high-throughput data ingestion while providing the necessary analytics capabilities to derive actionable insights.

  2. Website Performance Monitoring: Track key performance metrics from web applications, such as request latency and user activity. By storing metrics in CrateDB, teams can leverage the power of SQL-like queries to analyze traffic patterns, user engagement, and server performance over time, leading to optimized application performance and enhanced user experiences.

  3. Financial Transaction Analysis: Manage large volumes of financial transaction data for real-time fraud detection and analysis. With CrateDB’s scalable infrastructure, users can store, query, and analyze transaction metrics efficiently, allowing for the detection of anomalies and illicit activities based on transaction patterns and trends.

Feedback

Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Related Integrations

HTTP and InfluxDB Integration

The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.

View Integration

Kafka and InfluxDB Integration

This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.

View Integration

Kinesis and InfluxDB Integration

The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.

View Integration