KNX and OpenObserve Integration

Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.

info

This is not the recommended configuration for real-time query at scale. For query and compression optimization, high-speed ingest, and high availability, you may want to consider using the KNX plugin with InfluxDB.

5B+

Telegraf downloads

#1

Time series database
Source: DB Engines

1B+

Downloads of InfluxDB

2,800+

Contributors

Table of Contents

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Input and output integration overview

The KNX plugin listens for messages from the KNX home-automation bus via a KNX-IP interface, allowing for real-time data integration from KNX-enabled devices.

This configuration pairs Telegraf’s HTTP output with OpenObserve’s native JSON ingestion API, turning any Telegraf agent into a first-class OpenObserve collector.

Integration details

KNX

The KNX plugin allows for the listening to messages transmitted over the KNX home-automation bus. It establishes a connection with the KNX bus through a KNX-IP interface, making it compatible with various message datapoint types that KNX employs. The plugin supports service input configuration, wherein it remains active to listen for relevant metrics or events rather than relying solely on scheduled intervals. This inherent characteristic enables real-time data capture from the KNX systems, enhancing automation and integration possibilities for building management and smart home applications. Additionally, this plugin is designed to handle multiple measurements from the KNX data, allowing for a flexible categorization of metrics based on the derived datapoint types, thus broadening the scope of data integration in smart environments.

OpenObserve

OpenObserve is an open source observability platform written in Rust that stores data cost-effectively on object storage or local disk. It exposes REST endpoints such as /api/{org}/ingest/metrics/_json that accept batched metric documents conforming to a concise JSON schema, making it an attractive drop-in replacement for Loki or Elasticsearch stacks. The Telegraf HTTP output plugin streams metrics to arbitrary HTTP targets; when the "data_format = "json"" serializer is selected, Telegraf batches its metric objects into a payload that matches OpenObserve’s ingestion contract. The plugin supports configurable batch size, custom headers, TLS, and compression, allowing operators to authenticate with Basic or Bearer tokens and to enforce back-pressure without additional collectors. By reusing existing Telegraf agents already collecting system, application, or SNMP data, organizations can funnel rich telemetry into OpenObserve dashboards and SQL-like analytics with minimal overhead, enabling unified observability, long-term retention, and real-time alerting without vendor lock-in.

Configuration

KNX

[[inputs.knx_listener]]
  ## Type of KNX-IP interface.
  ## Can be either "tunnel_udp", "tunnel_tcp", "tunnel" (alias for tunnel_udp) or "router".
  # service_type = "tunnel"

  ## Address of the KNX-IP interface.
  service_address = "localhost:3671"

  ## Measurement definition(s)
  # [[inputs.knx_listener.measurement]]
  #   ## Name of the measurement
  #   name = "temperature"
  #   ## Datapoint-Type (DPT) of the KNX messages
  #   dpt = "9.001"
  #   ## Use the string representation instead of the numerical value for the
  #   ## datapoint-type and the addresses below
  #   # as_string = false
  #   ## List of Group-Addresses (GAs) assigned to the measurement
  #   addresses = ["5/5/1"]

  # [[inputs.knx_listener.measurement]]
  #   name = "illumination"
  #   dpt = "9.004"
  #   addresses = ["5/5/3"]

OpenObserve

[[outputs.http]]
  ## OpenObserve JSON metrics ingestion endpoint
  url = "https://api.openobserve.ai/api/default/ingest/metrics/_json"

  ## Use POST to push batches
  method = "POST"

  ## Basic auth header (base64 encoded "username:password")
  headers = { Authorization = "Basic dXNlcjpwYXNzd29yZA==" }

  ## Timeout for HTTP requests
  timeout = "10s"

  ## Override Content-Type to match OpenObserve expectation
  content_type = "application/json"

  ## Force Telegraf to batch and serialize metrics as JSON
  data_format = "json"

  ## JSON serializer specific options
  json_timestamp_units = "1ms"

  ## Uncomment to restrict batch size
  # batch_size = 5000

Input and output integration examples

KNX

  1. Smart Home Energy Monitoring: Utilize the KNX plugin to monitor energy consumption across various devices in a smart home setup. By configuring measurements for different appliances, users can gather real-time data on power usage, enabling them to optimize energy consumption and reduce costs. This setup can also integrate with visualization tools to provide insights into energy trends and usage patterns.

  2. Automated Lighting Control System: Leverage this plugin to listen for lighting status updates from KNX sensors in a building. By capturing measurements related to illumination, users can develop an automated lighting control system that adjusts the brightness based on the time of day or occupancy, enhancing comfort and energy efficiency.

  3. HVAC Performance Tracking: Implement the KNX plugin to track temperature and ventilation data across different zones in a building. By monitoring these metrics, facilities managers can identify trends in HVAC performance, optimize climate control strategies, and proactively address maintenance needs to ensure consistent environmental quality.

  4. Integrated Security Solutions: Use the plugin to capture data from KNX security sensors, such as door/window open/close statuses. This information can be routed into a central monitoring system, providing real-time alerts and enabling automated responses, such as locking doors or activating alarms, thus enhancing the building’s security posture.

OpenObserve

  1. Edge Device Health Mirror: Deploy Telegraf on thousands of industrial IoT devices to capture temperature, vibration, and power metrics, then use this output to push JSON batches to OpenObserve. Plant operators gain a real-time overview of machine health and can trigger maintenance based on anomalies without relying on heavyweight collectors.

  2. Blue-Green Deployment Canary: Attach a lightweight Telegraf sidecar to each Kubernetes release-candidate pod that scrapes /metrics and forwards container stats to a dedicated “canary” stream in OpenObserve. Continuous comparison of error rates between blue and green versions empowers the CI pipeline to auto-roll back poor performers within seconds.

  3. Multi-Tenant SaaS Billing Pipeline: Emit per-customer usage counters via Telegraf and tag them with tenant_id; the HTTP plugin posts them to OpenObserve where SQL reports aggregate usage into invoices, eliminating separate metering services and simplifying compliance audits.

  4. Security Threat Scoring: Fuse Suricata events and host resource metrics in Telegraf, deliver them to OpenObserve’s analytics engine, and run stream-processing rules that correlate spikes in suspicious traffic with CPU saturation to produce an actionable threat score and automatically open tickets in a SOAR platform.

Feedback

Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Related Integrations

HTTP and InfluxDB Integration

The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.

View Integration

Kafka and InfluxDB Integration

This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.

View Integration

Kinesis and InfluxDB Integration

The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.

View Integration