KNX and Sensu Integration
Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.
5B+
Telegraf downloads
#1
Time series database
Source: DB Engines
1B+
Downloads of InfluxDB
2,800+
Contributors
Table of Contents
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Input and output integration overview
The KNX plugin listens for messages from the KNX home-automation bus via a KNX-IP interface, allowing for real-time data integration from KNX-enabled devices.
This plugin writes metrics events to Sensu via its HTTP events API, enabling seamless integration with the Sensu monitoring platform.
Integration details
KNX
The KNX plugin allows for the listening to messages transmitted over the KNX home-automation bus. It establishes a connection with the KNX bus through a KNX-IP interface, making it compatible with various message datapoint types that KNX employs. The plugin supports service input configuration, wherein it remains active to listen for relevant metrics or events rather than relying solely on scheduled intervals. This inherent characteristic enables real-time data capture from the KNX systems, enhancing automation and integration possibilities for building management and smart home applications. Additionally, this plugin is designed to handle multiple measurements from the KNX data, allowing for a flexible categorization of metrics based on the derived datapoint types, thus broadening the scope of data integration in smart environments.
Sensu
This plugin writes metrics events to Sensu via its HTTP events API. Sensu is a monitoring system that enables users to collect, analyze, and manage metrics from various components in their infrastructure. The plugin facilitates the integration of Telegraf, a server agent for collecting and reporting metrics, with the Sensu monitoring platform. Users can configure settings such as backend and agent API URLs, API keys for authentication, and optional TLS settings. The plugin’s core functionality is centered around sending metric events, including check and entity specifications, to Sensu, allowing for comprehensive monitoring and alerting. The API reference provides extensive details about the events and metrics structure, ensuring users can efficiently leverage Sensu’s capabilities for observability and incident response.
Configuration
KNX
[[inputs.knx_listener]]
## Type of KNX-IP interface.
## Can be either "tunnel_udp", "tunnel_tcp", "tunnel" (alias for tunnel_udp) or "router".
# service_type = "tunnel"
## Address of the KNX-IP interface.
service_address = "localhost:3671"
## Measurement definition(s)
# [[inputs.knx_listener.measurement]]
# ## Name of the measurement
# name = "temperature"
# ## Datapoint-Type (DPT) of the KNX messages
# dpt = "9.001"
# ## Use the string representation instead of the numerical value for the
# ## datapoint-type and the addresses below
# # as_string = false
# ## List of Group-Addresses (GAs) assigned to the measurement
# addresses = ["5/5/1"]
# [[inputs.knx_listener.measurement]]
# name = "illumination"
# dpt = "9.004"
# addresses = ["5/5/3"]
Sensu
[[outputs.sensu]]
## BACKEND API URL is the Sensu Backend API root URL to send metrics to
## (protocol, host, and port only). The output plugin will automatically
## append the corresponding backend API path
## /api/core/v2/namespaces/:entity_namespace/events/:entity_name/:check_name).
##
## Backend Events API reference:
## https://docs.sensu.io/sensu-go/latest/api/events/
##
## AGENT API URL is the Sensu Agent API root URL to send metrics to
## (protocol, host, and port only). The output plugin will automatically
## append the correspeonding agent API path (/events).
##
## Agent API Events API reference:
## https://docs.sensu.io/sensu-go/latest/api/events/
##
## NOTE: if backend_api_url and agent_api_url and api_key are set, the output
## plugin will use backend_api_url. If backend_api_url and agent_api_url are
## not provided, the output plugin will default to use an agent_api_url of
## http://127.0.0.1:3031
##
# backend_api_url = "http://127.0.0.1:8080"
# agent_api_url = "http://127.0.0.1:3031"
## API KEY is the Sensu Backend API token
## Generate a new API token via:
##
## $ sensuctl cluster-role create telegraf --verb create --resource events,entities
## $ sensuctl cluster-role-binding create telegraf --cluster-role telegraf --group telegraf
## $ sensuctl user create telegraf --group telegraf --password REDACTED
## $ sensuctl api-key grant telegraf
##
## For more information on Sensu RBAC profiles & API tokens, please visit:
## - https://docs.sensu.io/sensu-go/latest/reference/rbac/
## - https://docs.sensu.io/sensu-go/latest/reference/apikeys/
##
# api_key = "${SENSU_API_KEY}"
## Optional TLS Config
# tls_ca = "/etc/telegraf/ca.pem"
# tls_cert = "/etc/telegraf/cert.pem"
# tls_key = "/etc/telegraf/key.pem"
## Use TLS but skip chain & host verification
# insecure_skip_verify = false
## Timeout for HTTP message
# timeout = "5s"
## HTTP Content-Encoding for write request body, can be set to "gzip" to
## compress body or "identity" to apply no encoding.
# content_encoding = "identity"
## NOTE: Due to the way TOML is parsed, tables must be at the END of the
## plugin definition, otherwise additional config options are read as part of
## the table
## Sensu Event details
##
## Below are the event details to be sent to Sensu. The main portions of the
## event are the check, entity, and metrics specifications. For more information
## on Sensu events and its components, please visit:
## - Events - https://docs.sensu.io/sensu-go/latest/reference/events
## - Checks - https://docs.sensu.io/sensu-go/latest/reference/checks
## - Entities - https://docs.sensu.io/sensu-go/latest/reference/entities
## - Metrics - https://docs.sensu.io/sensu-go/latest/reference/events#metrics
##
## Check specification
## The check name is the name to give the Sensu check associated with the event
## created. This maps to check.metadata.name in the event.
[outputs.sensu.check]
name = "telegraf"
## Entity specification
## Configure the entity name and namespace, if necessary. This will be part of
## the entity.metadata in the event.
##
## NOTE: if the output plugin is configured to send events to a
## backend_api_url and entity_name is not set, the value returned by
## os.Hostname() will be used; if the output plugin is configured to send
## events to an agent_api_url, entity_name and entity_namespace are not used.
# [outputs.sensu.entity]
# name = "server-01"
# namespace = "default"
## Metrics specification
## Configure the tags for the metrics that are sent as part of the Sensu event
# [outputs.sensu.tags]
# source = "telegraf"
## Configure the handler(s) for processing the provided metrics
# [outputs.sensu.metrics]
# handlers = ["influxdb","elasticsearch"]
Input and output integration examples
KNX
-
Smart Home Energy Monitoring: Utilize the KNX plugin to monitor energy consumption across various devices in a smart home setup. By configuring measurements for different appliances, users can gather real-time data on power usage, enabling them to optimize energy consumption and reduce costs. This setup can also integrate with visualization tools to provide insights into energy trends and usage patterns.
-
Automated Lighting Control System: Leverage this plugin to listen for lighting status updates from KNX sensors in a building. By capturing measurements related to illumination, users can develop an automated lighting control system that adjusts the brightness based on the time of day or occupancy, enhancing comfort and energy efficiency.
-
HVAC Performance Tracking: Implement the KNX plugin to track temperature and ventilation data across different zones in a building. By monitoring these metrics, facilities managers can identify trends in HVAC performance, optimize climate control strategies, and proactively address maintenance needs to ensure consistent environmental quality.
-
Integrated Security Solutions: Use the plugin to capture data from KNX security sensors, such as door/window open/close statuses. This information can be routed into a central monitoring system, providing real-time alerts and enabling automated responses, such as locking doors or activating alarms, thus enhancing the building’s security posture.
Sensu
-
Real-Time Infrastructure Monitoring: Utilize the Sensu plugin to send performance metrics from various servers and services directly to Sensu. This real-time data flow enables teams to visualize infrastructure health, track resource usage, and receive immediate alerts for any anomalies detected. By centralizing monitoring through Sensu, organizations can create a holistic view of their systems and respond swiftly to issues.
-
Automated Incident Response Workflows: Leverage the plugin to automatically trigger incident response workflows based on the metrics events sent to Sensu. For example, if CPU usage exceeds a defined threshold, the Sensu system can be configured to alert the operations team, which can then initiate automated remediation processes, reducing downtime and maintaining system reliability. This integration allows for proactive management of system resources.
-
Dynamic Scaling of Resources: Use the Sensu plugin to feed metrics into an auto-scaling system that adjusts resources based on demand. By tracking metrics like request load and resource utilization, organizations can automatically scale their infrastructure up or down, ensuring optimal performance and cost efficiency without manual intervention.
-
Centralized Logging and Monitoring: Combine the Sensu with logging tools to send logs and performance metrics to a centralized monitoring system. This comprehensive approach allows teams to correlate logs with metric events, providing deeper insights into system behavior and performance, which aids in troubleshooting and performance optimization over time.
Feedback
Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Related Integrations
Related Integrations
HTTP and InfluxDB Integration
The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.
View IntegrationKafka and InfluxDB Integration
This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.
View IntegrationKinesis and InfluxDB Integration
The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.
View Integration