MavLink and Graphite Integration
Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.
5B+
Telegraf downloads
#1
Time series database
Source: DB Engines
1B+
Downloads of InfluxDB
2,800+
Contributors
Table of Contents
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Input and output integration overview
This plugin collects metrics from MavLink-compatible flight controllers like ArduPilot and PX4, enabling live data ingestion from unmanned systems such as drones and boats.
The Graphite plugin enables users to send metrics collected by Telegraf into Graphite via TCP. This integration allows for efficient storage and visualization of time-series data using Graphite’s powerful capabilities.
Integration details
MavLink
The MavLink plugin is designed to gather metrics from MavLink-compatible flight controllers such as ArduPilot and PX4. It provides a mechanism to live ingest flight metrics from various unmanned systems, including drones, planes, and boats. By utilizing the ArduPilot-specific MavLink dialect, the plugin parses a wide range of messages as documented in the MavLink documentation. It enables seamless integration of telemetry data, allowing for detailed monitoring and analysis of flight operations. Users must be cautious, as this plugin may generate a substantial volume of data; thus, filters are available to limit the metrics collected and transmitted to output plugins. Additionally, configuration options allow customization of which messages to receive and how to connect to the flight controller.
Graphite
This plugin writes metrics to Graphite via raw TCP, allowing for seamless integration of Telegraf collected metrics into the Graphite ecosystem. With this plugin, users can configure multiple TCP endpoints for load balancing, ensuring high availability and reliability in metric transmission. The ability to customize metric naming with prefixes and utilize various templating options enhances flexibility in how data is represented within Graphite. Additionally, support for Graphite tags and options for strict sanitization of metric names allow for robust data management, catering to the varying needs of users. This capability is essential for organizations looking to leverage Graphite’s powerful metrics storage and visualization while maintaining control over data representation.
Configuration
MavLink
[[inputs.mavlink]]
## Flight controller URL supporting serial port, UDP and TCP connections.
## Options are documented at
## https://mavsdk.mavlink.io/v1.4/en/cpp/guide/connections.html.
##
## Examples:
## - Serial port: serial:///dev/ttyACM0:57600
## - TCP client: tcp://192.168.1.12:5760
## - UDP client: udp://192.168.1.12:14550
## - TCP server: tcpserver://:5760
## - UDP server: udpserver://:14550
# url = "tcp://127.0.0.1:5760"
## Filter to specific messages. Only the messages in this list will be parsed.
## If blank or unset, all messages will be accepted. Glob syntax is accepted.
## Each message in this list should be lowercase camel_case, with "message_"
## prefix removed, eg: "global_position_int", "attitude"
# filter = []
## Mavlink system ID for Telegraf. Only used if the mavlink plugin is sending
## messages, eg. when `stream_request_frequency` is 0 (see below.)
# system_id = 254
## Determines whether the plugin sends requests to subscribe to data.
## In mavlink, stream rates must be configured before data is received.
## This config item sets the rate in Hz, with 0 disabling the request.
##
## This frequency should be set to 0 if your software already controls the
## rates using REQUEST_DATA_STREAM or MAV_CMD_SET_MESSAGE_INTERVAL
## (See https://mavlink.io/en/mavgen_python/howto_requestmessages.html)
# stream_request_frequency = 4
Graphite
# Configuration for Graphite server to send metrics to
[[outputs.graphite]]
## TCP endpoint for your graphite instance.
## If multiple endpoints are configured, the output will be load balanced.
## Only one of the endpoints will be written to with each iteration.
servers = ["localhost:2003"]
## Local address to bind when connecting to the server
## If empty or not set, the local address is automatically chosen.
# local_address = ""
## Prefix metrics name
prefix = ""
## Graphite output template
## see https://github.com/influxdata/telegraf/blob/master/docs/DATA_FORMATS_OUTPUT.md
template = "host.tags.measurement.field"
## Strict sanitization regex
## This is the default sanitization regex that is used on data passed to the
## graphite serializer. Users can add additional characters here if required.
## Be aware that the characters, '/' '@' '*' are always replaced with '_',
## '..' is replaced with '.', and '\' is removed even if added to the
## following regex.
# graphite_strict_sanitize_regex = '[^a-zA-Z0-9-:._=\p{L}]'
## Enable Graphite tags support
# graphite_tag_support = false
## Applied sanitization mode when graphite tag support is enabled.
## * strict - uses the regex specified above
## * compatible - allows for greater number of characters
# graphite_tag_sanitize_mode = "strict"
## Character for separating metric name and field for Graphite tags
# graphite_separator = "."
## Graphite templates patterns
## 1. Template for cpu
## 2. Template for disk*
## 3. Default template
# templates = [
# "cpu tags.measurement.host.field",
# "disk* measurement.field",
# "host.measurement.tags.field"
#]
## timeout in seconds for the write connection to graphite
# timeout = "2s"
## Optional TLS Config
# tls_ca = "/etc/telegraf/ca.pem"
# tls_cert = "/etc/telegraf/cert.pem"
# tls_key = "/etc/telegraf/key.pem"
## Use TLS but skip chain & host verification
# insecure_skip_verify = false
Input and output integration examples
MavLink
-
Real-Time Fleet Monitoring: Utilize the MavLink plugin to create a centralized dashboard for monitoring multiple drones in real-time. By ingesting metrics from various flight controllers, operators can oversee the status, health, and location of all drones, allowing for quick decision-making and enhanced situational awareness. This integration could significantly improve coordination during large-scale operations, like aerial surveys or search and rescue missions.
-
Automated Anomaly Detection: Leverage MavLink in conjunction with machine learning algorithms to detect anomalies in flight data. By continuously monitoring metrics such as altitude, speed, and battery status, the system can alert operators to deviations from normal behavior, potentially indicating technical malfunctions or safety issues. This proactive approach can enhance safety and reduce the risk of in-flight failures.
-
Data-Driven Maintenance Scheduling: Integrate the data collected through the MavLink plugin with maintenance management systems to optimize maintenance schedules based on actual flight metrics. Analyzing the collected data can highlight patterns indicating when specific components are likely to fail, thereby enabling predictive maintenance strategies that minimize downtime and repair costs.
-
Enhanced Research Analytics: For academic and commercial UAV research, MavLink can be used to gather extensive flight data for analysis. By compiling metrics over numerous flights, researchers can uncover insights related to flight patterns, environmental interactions, and the efficiency of different drone models. This can foster advancements in UAV technology and broader applications in autonomous systems.
Graphite
-
Dynamic Metric Visualization: The Graphite plugin can be utilized to feed real-time metrics from various sources, such as application performance data or server health metrics, into Graphite. This dynamic integration allows teams to create interactive dashboards that visualize key performance indicators, track trends over time, and make data-driven decisions to enhance system performance.
-
Load Balanced Metrics Collection: By configuring multiple TCP endpoints within the plugin, organizations can implement load balancing for metric transmission. This use case ensures that metric delivery is both resilient and efficient, reducing the risk of data loss during high-traffic periods and maintaining a reliable flow of information to Graphite.
-
Customized Metrics Tagging: With support for Graphite tags, users can employ the Graphite plugin to enhance the granularity of their metrics. Tagging metrics with relevant information, such as application environment or service type, allows for more refined queries and analytics, enabling teams to drill down into specific areas of interest for better operational insights.
-
Enhanced Data Sanitization: Leveraging the plugin’s strict sanitization options, users can ensure that their metric names comply with Graphite’s requirements. This proactive measure eliminates potential issues arising from invalid characters in metric names, allowing for cleaner data management and more accurate visualizations.
Feedback
Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Related Integrations
Related Integrations
HTTP and InfluxDB Integration
The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.
View IntegrationKafka and InfluxDB Integration
This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.
View IntegrationKinesis and InfluxDB Integration
The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.
View Integration