Mesos and Apache Inlong Integration
Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.
5B+
Telegraf downloads
#1
Time series database
Source: DB Engines
1B+
Downloads of InfluxDB
2,800+
Contributors
Table of Contents
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Input and output integration overview
This input plugin gathers metrics from Mesos.
The Inlong plugin connects Telegraf to Apache InLong, enabling seamless transmission of collected metrics to an InLong instance.
Integration details
Mesos
The Mesos plugin for Telegraf is designed to collect and report metrics from Apache Mesos clusters, which is essential for monitoring and observability in container orchestration and resource management. Mesos, known for its scalability and ability to manage diverse workloads, generates various metrics about resource usage, tasks, frameworks, and overall system performance. By utilizing this plugin, users can track the health and efficiency of their Mesos clusters, gather insights into resource distribution, and ensure that applications receive the necessary resources in a timely manner. The configuration allows users to specify the relevant Mesos master’s details, along with the desired metric groups to collect, making it adaptable to different deployments and monitoring needs. Overall, this plugin integrates seamlessly within the Telegraf collection pipeline, supporting detailed observability for cloud-native environments.
Apache Inlong
This Inlong plugin is designed to publish metrics to an Apache InLong instance, which facilitates the management of data streams in a scalable manner. Apache InLong provides a robust framework for efficient data transmission between various components in a distributed environment. By leveraging this plugin, users can effectively route and transmit metrics collected by Telegraf to their InLong data-proxy infrastructure. As a key component in a data pipeline, the Inlong Output Plugin helps ensure that data is consistently formatted, streamed correctly, and managed in compliance with the standards set by Apache InLong, making it an essential tool for organizations looking to enhance their data analytics and reporting capabilities.
Configuration
Mesos
[[inputs.mesos]]
## Timeout, in ms.
timeout = 100
## A list of Mesos masters.
masters = ["http://localhost:5050"]
## Master metrics groups to be collected, by default, all enabled.
master_collections = [
"resources",
"master",
"system",
"agents",
"frameworks",
"framework_offers",
"tasks",
"messages",
"evqueue",
"registrar",
"allocator",
]
## A list of Mesos slaves, default is []
# slaves = []
## Slave metrics groups to be collected, by default, all enabled.
# slave_collections = [
# "resources",
# "agent",
# "system",
# "executors",
# "tasks",
# "messages",
# ]
## Optional TLS Config
# tls_ca = "/etc/telegraf/ca.pem"
# tls_cert = "/etc/telegraf/cert.pem"
# tls_key = "/etc/telegraf/key.pem"
## Use TLS but skip chain & host verification
# insecure_skip_verify = false
Apache Inlong
[[outputs.inlong]]
## Manager URL to obtain the Inlong data-proxy IP list for sending the data
url = "http://127.0.0.1:8083"
## Unique identifier for the data-stream group
group_id = "telegraf"
## Unique identifier for the data stream within its group
stream_id = "telegraf"
## Data format to output.
## Each data format has its own unique set of configuration options, read
## more about them here:
## https://github.com/influxdata/telegraf/blob/master/docs/DATA_FORMATS_OUTPUT.md
# data_format = "influx"
Input and output integration examples
Mesos
-
Resource Utilization Monitoring: Use the Mesos plugin to continually monitor CPU, memory, and disk usage across your Mesos cluster. For a rapidly scaling application, tracking these metrics helps ensure that resources are dynamically allocated according to workloads, preventing bottlenecks and optimizing performance.
-
Framework Performance Analysis: Integrate this plugin to measure the performance of different frameworks running on Mesos. By comparing active frameworks and their task success rates, you can identify which frameworks provide the best resource efficiency or may require optimization.
-
Alerts for System Health: Set up alerts based on metrics collected by the Mesos plugin to notify engineering teams when resource utilization exceeds key thresholds or when specific tasks fail. This allows for proactive intervention and maintenance before critical failures occur.
-
Capacity Planning: Utilize gathered metrics to analyze historical resource usage patterns to assist in capacity planning. By understanding peak loads and resource utilization trends, teams can make informed decisions on scaling infrastructure and deploying additional resources as needed.
Apache Inlong
-
Real-time Metrics Monitoring: Integrating the Inlong plugin with a real-time monitoring dashboard allows teams to visualize system performance continuously. As metrics flow from Telegraf to InLong, organizations can create dynamic panels in their monitoring tools, providing instant insights into system health, resource utilization, and performance bottlenecks. This setup encourages proactive management and swift identification of potential issues before they escalate into critical failures.
-
Centralized Data Processing: Use the Inlong plugin to send Telegraf metrics to a centralized data processing pipeline that processes large volumes of data for analysis. By directing all collected metrics through Apache InLong, businesses can streamline their data workflows and ensure consistency in data formatting and processing. This centralized approach facilitates easier data integration with business intelligence tools and enhances decision-making through consolidated data insights.
-
Integration with Machine Learning Models: By feeding metrics collected through the Inlong Output Plugin into machine learning models, teams can enhance predictive analytics capabilities. For instance, metrics can be analyzed to predict system failures or performance trends. This application allows organizations to leverage historical data and infer future performance, helping them optimize resource allocation and minimize downtime using automated alerts based on model predictions.
Feedback
Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Related Integrations
Related Integrations
HTTP and InfluxDB Integration
The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.
View IntegrationKafka and InfluxDB Integration
This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.
View IntegrationKinesis and InfluxDB Integration
The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.
View Integration