Mesos and Librato Integration

Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.

info

This is not the recommended configuration for real-time query at scale. For query and compression optimization, high-speed ingest, and high availability, you may want to consider Mesos and InfluxDB.

5B+

Telegraf downloads

#1

Time series database
Source: DB Engines

1B+

Downloads of InfluxDB

2,800+

Contributors

Table of Contents

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Input and output integration overview

This input plugin gathers metrics from Mesos.

The Librato plugin for Telegraf is designed to facilitate seamless integration with the Librato Metrics API, allowing for efficient metric reporting and monitoring.

Integration details

Mesos

The Mesos plugin for Telegraf is designed to collect and report metrics from Apache Mesos clusters, which is essential for monitoring and observability in container orchestration and resource management. Mesos, known for its scalability and ability to manage diverse workloads, generates various metrics about resource usage, tasks, frameworks, and overall system performance. By utilizing this plugin, users can track the health and efficiency of their Mesos clusters, gather insights into resource distribution, and ensure that applications receive the necessary resources in a timely manner. The configuration allows users to specify the relevant Mesos master’s details, along with the desired metric groups to collect, making it adaptable to different deployments and monitoring needs. Overall, this plugin integrates seamlessly within the Telegraf collection pipeline, supporting detailed observability for cloud-native environments.

Librato

The Librato plugin enables Telegraf to send metrics to the Librato Metrics API. To authenticate, users must provide an api_user and api_token, which can be acquired from the Librato account settings. This integration allows for efficient monitoring and reporting of custom metrics within the Librato platform. The plugin also utilizes a source_tag option that can enrich the metrics with contextual information from Point Tags; however, it does not currently support sending associated Point Tags. It is essential to note that any point value sent that cannot be converted to a float64 type will be skipped, ensuring that only valid metrics are processed and sent to Librato. The plugin also supports secret-store options for managing sensitive authentication credentials securely, facilitating best practices in credential management.

Configuration

Mesos

[[inputs.mesos]]
  ## Timeout, in ms.
  timeout = 100

  ## A list of Mesos masters.
  masters = ["http://localhost:5050"]

  ## Master metrics groups to be collected, by default, all enabled.
  master_collections = [
    "resources",
    "master",
    "system",
    "agents",
    "frameworks",
    "framework_offers",
    "tasks",
    "messages",
    "evqueue",
    "registrar",
    "allocator",
  ]

  ## A list of Mesos slaves, default is []
  # slaves = []

  ## Slave metrics groups to be collected, by default, all enabled.
  # slave_collections = [
  #   "resources",
  #   "agent",
  #   "system",
  #   "executors",
  #   "tasks",
  #   "messages",
  # ]

  ## Optional TLS Config
  # tls_ca = "/etc/telegraf/ca.pem"
  # tls_cert = "/etc/telegraf/cert.pem"
  # tls_key = "/etc/telegraf/key.pem"
  ## Use TLS but skip chain & host verification
  # insecure_skip_verify = false

Librato

[[outputs.librato]]
  ## Librato API Docs
  ## http://dev.librato.com/v1/metrics-authentication
  ## Librato API user
  api_user = "[email protected]" # required.
  ## Librato API token
  api_token = "my-secret-token" # required.
  ## Debug
  # debug = false
  ## Connection timeout.
  # timeout = "5s"
  ## Output source Template (same as graphite buckets)
  ## see https://github.com/influxdata/telegraf/blob/master/docs/DATA_FORMATS_OUTPUT.md#graphite
  ## This template is used in librato's source (not metric's name)
  template = "host"

Input and output integration examples

Mesos

  1. Resource Utilization Monitoring: Use the Mesos plugin to continually monitor CPU, memory, and disk usage across your Mesos cluster. For a rapidly scaling application, tracking these metrics helps ensure that resources are dynamically allocated according to workloads, preventing bottlenecks and optimizing performance.

  2. Framework Performance Analysis: Integrate this plugin to measure the performance of different frameworks running on Mesos. By comparing active frameworks and their task success rates, you can identify which frameworks provide the best resource efficiency or may require optimization.

  3. Alerts for System Health: Set up alerts based on metrics collected by the Mesos plugin to notify engineering teams when resource utilization exceeds key thresholds or when specific tasks fail. This allows for proactive intervention and maintenance before critical failures occur.

  4. Capacity Planning: Utilize gathered metrics to analyze historical resource usage patterns to assist in capacity planning. By understanding peak loads and resource utilization trends, teams can make informed decisions on scaling infrastructure and deploying additional resources as needed.

Librato

  1. Real-time Application Monitoring: Utilize Librato to collect performance metrics from a web application in real-time. This setup involves sending response times, error rates, and user interactions to Librato, allowing developers to monitor the application’s health and performance metrics closely. By analyzing these metrics, teams can quickly identify and address performance bottlenecks or application failures before they impact end users.

  2. Infrastructure Metrics Aggregation: Leverage this plugin to gather and send metrics from various infrastructure components, such as servers or containers, to Librato for centralized monitoring. Configuring the plugin to send CPU, memory usage, and disk I/O metrics enables system administrators to have a comprehensive view of infrastructure performance, assisting in capacity planning and resource optimization strategies.

  3. Custom Metrics for Business Operations: Feed business-specific metrics, such as sales transactions or user sign-ups, to the Librato service using this plugin. By tracking these custom metrics, businesses can gain insights into their operational performance and make data-driven decisions to enhance their strategies, marketing efforts, or product development initiatives.

  4. Anomaly Detection in Metrics: Implement monitoring tools that utilize machine learning for anomaly detection. By continuously sending real-time metrics to Librato, teams can analyze trends and automatically flag unusual behavior, such as sudden spikes in latency or unusual traffic patterns, enabling timely intervention and troubleshooting.

Feedback

Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Related Integrations

HTTP and InfluxDB Integration

The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.

View Integration

Kafka and InfluxDB Integration

This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.

View Integration

Kinesis and InfluxDB Integration

The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.

View Integration