Mesos and OpenObserve Integration
Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.
5B+
Telegraf downloads
#1
Time series database
Source: DB Engines
1B+
Downloads of InfluxDB
2,800+
Contributors
Table of Contents
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Input and output integration overview
This input plugin gathers metrics from Mesos.
This configuration pairs Telegraf’s HTTP output with OpenObserve’s native JSON ingestion API, turning any Telegraf agent into a first-class OpenObserve collector.
Integration details
Mesos
The Mesos plugin for Telegraf is designed to collect and report metrics from Apache Mesos clusters, which is essential for monitoring and observability in container orchestration and resource management. Mesos, known for its scalability and ability to manage diverse workloads, generates various metrics about resource usage, tasks, frameworks, and overall system performance. By utilizing this plugin, users can track the health and efficiency of their Mesos clusters, gather insights into resource distribution, and ensure that applications receive the necessary resources in a timely manner. The configuration allows users to specify the relevant Mesos master’s details, along with the desired metric groups to collect, making it adaptable to different deployments and monitoring needs. Overall, this plugin integrates seamlessly within the Telegraf collection pipeline, supporting detailed observability for cloud-native environments.
OpenObserve
OpenObserve is an open source observability platform written in Rust that stores data cost-effectively on object storage or local disk. It exposes REST endpoints such as /api/{org}/ingest/metrics/_json
that accept batched metric documents conforming to a concise JSON schema, making it an attractive drop-in replacement for Loki or Elasticsearch stacks. The Telegraf HTTP output plugin streams metrics to arbitrary HTTP targets; when the "data_format = "json"" serializer is selected, Telegraf batches its metric objects into a payload that matches OpenObserve’s ingestion contract. The plugin supports configurable batch size, custom headers, TLS, and compression, allowing operators to authenticate with Basic or Bearer tokens and to enforce back-pressure without additional collectors. By reusing existing Telegraf agents already collecting system, application, or SNMP data, organizations can funnel rich telemetry into OpenObserve dashboards and SQL-like analytics with minimal overhead, enabling unified observability, long-term retention, and real-time alerting without vendor lock-in.
Configuration
Mesos
[[inputs.mesos]]
## Timeout, in ms.
timeout = 100
## A list of Mesos masters.
masters = ["http://localhost:5050"]
## Master metrics groups to be collected, by default, all enabled.
master_collections = [
"resources",
"master",
"system",
"agents",
"frameworks",
"framework_offers",
"tasks",
"messages",
"evqueue",
"registrar",
"allocator",
]
## A list of Mesos slaves, default is []
# slaves = []
## Slave metrics groups to be collected, by default, all enabled.
# slave_collections = [
# "resources",
# "agent",
# "system",
# "executors",
# "tasks",
# "messages",
# ]
## Optional TLS Config
# tls_ca = "/etc/telegraf/ca.pem"
# tls_cert = "/etc/telegraf/cert.pem"
# tls_key = "/etc/telegraf/key.pem"
## Use TLS but skip chain & host verification
# insecure_skip_verify = false
OpenObserve
[[outputs.http]]
## OpenObserve JSON metrics ingestion endpoint
url = "https://api.openobserve.ai/api/default/ingest/metrics/_json"
## Use POST to push batches
method = "POST"
## Basic auth header (base64 encoded "username:password")
headers = { Authorization = "Basic dXNlcjpwYXNzd29yZA==" }
## Timeout for HTTP requests
timeout = "10s"
## Override Content-Type to match OpenObserve expectation
content_type = "application/json"
## Force Telegraf to batch and serialize metrics as JSON
data_format = "json"
## JSON serializer specific options
json_timestamp_units = "1ms"
## Uncomment to restrict batch size
# batch_size = 5000
Input and output integration examples
Mesos
-
Resource Utilization Monitoring: Use the Mesos plugin to continually monitor CPU, memory, and disk usage across your Mesos cluster. For a rapidly scaling application, tracking these metrics helps ensure that resources are dynamically allocated according to workloads, preventing bottlenecks and optimizing performance.
-
Framework Performance Analysis: Integrate this plugin to measure the performance of different frameworks running on Mesos. By comparing active frameworks and their task success rates, you can identify which frameworks provide the best resource efficiency or may require optimization.
-
Alerts for System Health: Set up alerts based on metrics collected by the Mesos plugin to notify engineering teams when resource utilization exceeds key thresholds or when specific tasks fail. This allows for proactive intervention and maintenance before critical failures occur.
-
Capacity Planning: Utilize gathered metrics to analyze historical resource usage patterns to assist in capacity planning. By understanding peak loads and resource utilization trends, teams can make informed decisions on scaling infrastructure and deploying additional resources as needed.
OpenObserve
-
Edge Device Health Mirror: Deploy Telegraf on thousands of industrial IoT devices to capture temperature, vibration, and power metrics, then use this output to push JSON batches to OpenObserve. Plant operators gain a real-time overview of machine health and can trigger maintenance based on anomalies without relying on heavyweight collectors.
-
Blue-Green Deployment Canary: Attach a lightweight Telegraf sidecar to each Kubernetes release-candidate pod that scrapes /metrics and forwards container stats to a dedicated “canary” stream in OpenObserve. Continuous comparison of error rates between blue and green versions empowers the CI pipeline to auto-roll back poor performers within seconds.
-
Multi-Tenant SaaS Billing Pipeline: Emit per-customer usage counters via Telegraf and tag them with
tenant_id
; the HTTP plugin posts them to OpenObserve where SQL reports aggregate usage into invoices, eliminating separate metering services and simplifying compliance audits. -
Security Threat Scoring: Fuse Suricata events and host resource metrics in Telegraf, deliver them to OpenObserve’s analytics engine, and run stream-processing rules that correlate spikes in suspicious traffic with CPU saturation to produce an actionable threat score and automatically open tickets in a SOAR platform.
Feedback
Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Related Integrations
Related Integrations
HTTP and InfluxDB Integration
The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.
View IntegrationKafka and InfluxDB Integration
This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.
View IntegrationKinesis and InfluxDB Integration
The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.
View Integration