MQTT and Microsoft Fabric Integration
Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.
5B+
Telegraf downloads
#1
Time series database
Source: DB Engines
1B+
Downloads of InfluxDB
2,800+
Contributors
Table of Contents
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Input and output integration overview
The MQTT Telegraf plugin is designed to read from specified MQTT topics and create metrics, enabling users to leverage MQTT for real-time data collection and monitoring.
The Microsoft Fabric plugin writes metrics to Real time analytics in Fabric services, enabling powerful data storage and analysis capabilities.
Integration details
MQTT
The MQTT plugin allows for reading metrics from specified MQTT topics, creating metrics using supported input data formats. This plugin operates as a service input, which listens for incoming metrics or events rather than gathering them at set intervals like normal plugins. The flexibility of the plugin is enhanced with support for various broker URLs, topics, and connection features, including Quality of Service (QoS) levels and persistent sessions. Its configuration options incorporate global settings to modify metrics and handle startup errors effectively. It also supports secret-store configurations for securing username and password options, ensuring secure connections to MQTT servers.
Microsoft Fabric
This plugin allows you to leverage Microsoft Fabric’s capabilities to store and analyze your Telegraf metrics. Eventhouse is a high-performance, scalable data-store designed for real-time analytics. It allows you to ingest, store and query large volumes of data with low latency. The plugin supports both events and metrics with versatile grouping options. It provides various configuration parameters including connection strings specifying details like the data source, ingestion types, and which tables to use for storage. With support for streaming ingestion and event streams, this plugin enables seamless integration and data flow into Microsoft’s analytics ecosystem, allowing for rich data querying capabilities and near-real-time processing.
Configuration
MQTT
[[inputs.mqtt_consumer]]
servers = ["tcp://127.0.0.1:1883"]
topics = [
"telegraf/host01/cpu",
"telegraf/+/mem",
"sensors/#",
]
# topic_tag = "topic"
# qos = 0
# connection_timeout = "30s"
# keepalive = "60s"
# ping_timeout = "10s"
# max_undelivered_messages = 1000
# persistent_session = false
# client_id = ""
# username = "telegraf"
# password = "metricsmetricsmetricsmetrics"
# tls_ca = "/etc/telegraf/ca.pem"
# tls_cert = "/etc/telegraf/cert.pem"
# tls_key = "/etc/telegraf/key.pem"
# insecure_skip_verify = false
# client_trace = false
data_format = "influx"
# [[inputs.mqtt_consumer.topic_parsing]]
# topic = ""
# measurement = ""
# tags = ""
# fields = ""
# [inputs.mqtt_consumer.topic_parsing.types]
# key = type
Microsoft Fabric
[[outputs.microsoft_fabric]]
## The URI property of the resource on Azure
connection_string = "https://trd-abcd.xx.kusto.fabric.microsoft.com;Database=kusto_eh;Table Name=telegraf_dump;Key=value"
## Client timeout
# timeout = "30s"
Input and output integration examples
MQTT
-
Smart Home Monitoring: Use the MQTT Consumer plugin to monitor various sensors in a smart home setup. In this scenario, the plugin can be configured to subscribe to topics for different devices, such as temperature, humidity, and energy consumption. By aggregating this data, homeowners can visualize trends and receive alerts for unusual patterns, enhancing the overall quality and efficiency of home automation systems.
-
IoT Environmental Sensing: Deploy the MQTT Consumer to gather environmental data from sensors distributed across different locations. For instance, this can include readings from air quality sensors, temperature sensors, and noise level meters. The plugin can be configured to extract relevant tags and fields from the MQTT topics which allows for detailed analyses and reporting on environmental conditions at scale, supporting better decision making for urban planning or environmental initiatives.
-
Real-Time Vehicle Tracking and Telemetry: Integrate the MQTT Consumer plugin within a vehicle telemetry system that collects data from various sensors in real-time. With the plugin, metrics related to vehicle performance, location, and fuel consumption can be sent to a centralized monitoring dashboard. This real-time telemetry data enables fleet managers to optimize routes, reduce fuel costs, and improve vehicle maintenance schedules through proactive data analysis.
-
Agricultural Monitoring System: Leverage this plugin to collect data from agricultural sensors that monitor soil moisture, crop health, and weather conditions. The MQTT Consumer can subscribe to multiple topics associated with farming equipment and environmental sensors, allowing farmers to make data-driven decisions to improve crop yields while also conserving resources, enhancing sustainability in agriculture.
Microsoft Fabric
-
Real-time Monitoring Dashboards: Utilize the Microsoft Fabric plugin to feed live metrics from your applications into a real-time dashboard on Microsoft Fabric. This allows teams to visualize key performance indicators instantly, enabling quick decision-making and timely responses to performance issues.
-
Automated Data Ingestion from IoT Devices: Use this plugin in scenarios where metrics from IoT devices need to be ingested into Azure for analysis. Using the plugin’s capabilities, data can be streamed continuously, facilitating real-time analytics and reporting without complex coding efforts.
-
Cross-Platform Data Aggregation: Leverage the plugin to consolidate metrics from multiple systems and applications into a single Azure Data Explorer table. This use case enables easier data management and analysis by centralizing disparate data sources within a unified analytics framework.
-
Enhanced Event Transformation Workflows: Integrate the plugin with Eventstreams to facilitate real-time event ingestion and transformation. By configuring different metrics and partition keys, users can manipulate the flow of data as it enters the system, allowing for advanced processing before the data reaches its final destination.
Feedback
Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Related Integrations
Related Integrations
HTTP and InfluxDB Integration
The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.
View IntegrationKafka and InfluxDB Integration
This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.
View IntegrationKinesis and InfluxDB Integration
The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.
View Integration