MQTT and OpenObserve Integration

Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.

info

This is not the recommended configuration for real-time query at scale. For query and compression optimization, high-speed ingest, and high availability, you may want to consider MQTT and InfluxDB.

5B+

Telegraf downloads

#1

Time series database
Source: DB Engines

1B+

Downloads of InfluxDB

2,800+

Contributors

Table of Contents

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Input and output integration overview

The MQTT Telegraf plugin is designed to read from specified MQTT topics and create metrics, enabling users to leverage MQTT for real-time data collection and monitoring.

This configuration pairs Telegraf’s HTTP output with OpenObserve’s native JSON ingestion API, turning any Telegraf agent into a first-class OpenObserve collector.

Integration details

MQTT

The MQTT plugin allows for reading metrics from specified MQTT topics, creating metrics using supported input data formats. This plugin operates as a service input, which listens for incoming metrics or events rather than gathering them at set intervals like normal plugins. The flexibility of the plugin is enhanced with support for various broker URLs, topics, and connection features, including Quality of Service (QoS) levels and persistent sessions. Its configuration options incorporate global settings to modify metrics and handle startup errors effectively. It also supports secret-store configurations for securing username and password options, ensuring secure connections to MQTT servers.

OpenObserve

OpenObserve is an open source observability platform written in Rust that stores data cost-effectively on object storage or local disk. It exposes REST endpoints such as /api/{org}/ingest/metrics/_json that accept batched metric documents conforming to a concise JSON schema, making it an attractive drop-in replacement for Loki or Elasticsearch stacks. The Telegraf HTTP output plugin streams metrics to arbitrary HTTP targets; when the "data_format = "json"" serializer is selected, Telegraf batches its metric objects into a payload that matches OpenObserve’s ingestion contract. The plugin supports configurable batch size, custom headers, TLS, and compression, allowing operators to authenticate with Basic or Bearer tokens and to enforce back-pressure without additional collectors. By reusing existing Telegraf agents already collecting system, application, or SNMP data, organizations can funnel rich telemetry into OpenObserve dashboards and SQL-like analytics with minimal overhead, enabling unified observability, long-term retention, and real-time alerting without vendor lock-in.

Configuration

MQTT


[[inputs.mqtt_consumer]]
  servers = ["tcp://127.0.0.1:1883"]
  topics = [
    "telegraf/host01/cpu",
    "telegraf/+/mem",
    "sensors/#",
  ]
  # topic_tag = "topic"
  # qos = 0
  # connection_timeout = "30s"
  # keepalive = "60s"
  # ping_timeout = "10s"
  # max_undelivered_messages = 1000
  # persistent_session = false
  # client_id = ""
  # username = "telegraf"
  # password = "metricsmetricsmetricsmetrics"
  # tls_ca = "/etc/telegraf/ca.pem"
  # tls_cert = "/etc/telegraf/cert.pem"
  # tls_key = "/etc/telegraf/key.pem"
  # insecure_skip_verify = false
  # client_trace = false
  data_format = "influx"
  # [[inputs.mqtt_consumer.topic_parsing]]
  #   topic = ""
  #   measurement = ""
  #   tags = ""
  #   fields = ""
  #   [inputs.mqtt_consumer.topic_parsing.types]
  #      key = type

OpenObserve

[[outputs.http]]
  ## OpenObserve JSON metrics ingestion endpoint
  url = "https://api.openobserve.ai/api/default/ingest/metrics/_json"

  ## Use POST to push batches
  method = "POST"

  ## Basic auth header (base64 encoded "username:password")
  headers = { Authorization = "Basic dXNlcjpwYXNzd29yZA==" }

  ## Timeout for HTTP requests
  timeout = "10s"

  ## Override Content-Type to match OpenObserve expectation
  content_type = "application/json"

  ## Force Telegraf to batch and serialize metrics as JSON
  data_format = "json"

  ## JSON serializer specific options
  json_timestamp_units = "1ms"

  ## Uncomment to restrict batch size
  # batch_size = 5000

Input and output integration examples

MQTT

  1. Smart Home Monitoring: Use the MQTT Consumer plugin to monitor various sensors in a smart home setup. In this scenario, the plugin can be configured to subscribe to topics for different devices, such as temperature, humidity, and energy consumption. By aggregating this data, homeowners can visualize trends and receive alerts for unusual patterns, enhancing the overall quality and efficiency of home automation systems.

  2. IoT Environmental Sensing: Deploy the MQTT Consumer to gather environmental data from sensors distributed across different locations. For instance, this can include readings from air quality sensors, temperature sensors, and noise level meters. The plugin can be configured to extract relevant tags and fields from the MQTT topics which allows for detailed analyses and reporting on environmental conditions at scale, supporting better decision making for urban planning or environmental initiatives.

  3. Real-Time Vehicle Tracking and Telemetry: Integrate the MQTT Consumer plugin within a vehicle telemetry system that collects data from various sensors in real-time. With the plugin, metrics related to vehicle performance, location, and fuel consumption can be sent to a centralized monitoring dashboard. This real-time telemetry data enables fleet managers to optimize routes, reduce fuel costs, and improve vehicle maintenance schedules through proactive data analysis.

  4. Agricultural Monitoring System: Leverage this plugin to collect data from agricultural sensors that monitor soil moisture, crop health, and weather conditions. The MQTT Consumer can subscribe to multiple topics associated with farming equipment and environmental sensors, allowing farmers to make data-driven decisions to improve crop yields while also conserving resources, enhancing sustainability in agriculture.

OpenObserve

  1. Edge Device Health Mirror: Deploy Telegraf on thousands of industrial IoT devices to capture temperature, vibration, and power metrics, then use this output to push JSON batches to OpenObserve. Plant operators gain a real-time overview of machine health and can trigger maintenance based on anomalies without relying on heavyweight collectors.

  2. Blue-Green Deployment Canary: Attach a lightweight Telegraf sidecar to each Kubernetes release-candidate pod that scrapes /metrics and forwards container stats to a dedicated “canary” stream in OpenObserve. Continuous comparison of error rates between blue and green versions empowers the CI pipeline to auto-roll back poor performers within seconds.

  3. Multi-Tenant SaaS Billing Pipeline: Emit per-customer usage counters via Telegraf and tag them with tenant_id; the HTTP plugin posts them to OpenObserve where SQL reports aggregate usage into invoices, eliminating separate metering services and simplifying compliance audits.

  4. Security Threat Scoring: Fuse Suricata events and host resource metrics in Telegraf, deliver them to OpenObserve’s analytics engine, and run stream-processing rules that correlate spikes in suspicious traffic with CPU saturation to produce an actionable threat score and automatically open tickets in a SOAR platform.

Feedback

Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Related Integrations

HTTP and InfluxDB Integration

The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.

View Integration

Kafka and InfluxDB Integration

This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.

View Integration

Kinesis and InfluxDB Integration

The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.

View Integration