NATS and Librato Integration

Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.

info

This is not the recommended configuration for real-time query at scale. For query and compression optimization, high-speed ingest, and high availability, you may want to consider NATS and InfluxDB.

5B+

Telegraf downloads

#1

Time series database
Source: DB Engines

1B+

Downloads of InfluxDB

2,800+

Contributors

Table of Contents

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Input and output integration overview

The NATS Consumer Input Plugin enables real-time data consumption from NATS messaging subjects, integrating seamlessly into the Telegraf data pipeline for monitoring and metrics gathering.

The Librato plugin for Telegraf is designed to facilitate seamless integration with the Librato Metrics API, allowing for efficient metric reporting and monitoring.

Integration details

NATS

The NATS Consumer Plugin allows Telegraf to read metrics from specified NATS subjects and create metrics based on supported input data formats. Utilizing a Queue Group allows multiple instances of Telegraf to read from a NATS cluster in parallel, enhancing throughput and reliability. This plugin also supports various authentication methods, including username/password, NATS credentials files, and nkey seed files, ensuring secure communication with the NATS servers. It is particularly useful in environments where data persistence and message reliability are critical, thanks to features such as JetStream that facilitate the consumption of historical messages. Additionally, the ability to configure various operational parameters makes this plugin suitable for high-throughput scenarios while maintaining performance integrity.

Librato

The Librato plugin enables Telegraf to send metrics to the Librato Metrics API. To authenticate, users must provide an api_user and api_token, which can be acquired from the Librato account settings. This integration allows for efficient monitoring and reporting of custom metrics within the Librato platform. The plugin also utilizes a source_tag option that can enrich the metrics with contextual information from Point Tags; however, it does not currently support sending associated Point Tags. It is essential to note that any point value sent that cannot be converted to a float64 type will be skipped, ensuring that only valid metrics are processed and sent to Librato. The plugin also supports secret-store options for managing sensitive authentication credentials securely, facilitating best practices in credential management.

Configuration

NATS

[[inputs.nats_consumer]]
  ## urls of NATS servers
  servers = ["nats://localhost:4222"]

  ## subject(s) to consume
  ## If you use jetstream you need to set the subjects
  ## in jetstream_subjects
  subjects = ["telegraf"]

  ## jetstream subjects
  ## jetstream is a streaming technology inside of nats.
  ## With jetstream the nats-server persists messages and
  ## a consumer can consume historical messages. This is
  ## useful when telegraf needs to restart it don't miss a
  ## message. You need to configure the nats-server.
  ## https://docs.nats.io/nats-concepts/jetstream.
  jetstream_subjects = ["js_telegraf"]

  ## name a queue group
  queue_group = "telegraf_consumers"

  ## Optional authentication with username and password credentials
  # username = ""
  # password = ""

  ## Optional authentication with NATS credentials file (NATS 2.0)
  # credentials = "/etc/telegraf/nats.creds"

  ## Optional authentication with nkey seed file (NATS 2.0)
  # nkey_seed = "/etc/telegraf/seed.txt"

  ## Use Transport Layer Security
  # secure = false

  ## Optional TLS Config
  # tls_ca = "/etc/telegraf/ca.pem"
  # tls_cert = "/etc/telegraf/cert.pem"
  # tls_key = "/etc/telegraf/key.pem"
  ## Use TLS but skip chain & host verification
  # insecure_skip_verify = false

  ## Sets the limits for pending msgs and bytes for each subscription
  ## These shouldn't need to be adjusted except in very high throughput scenarios
  # pending_message_limit = 65536
  # pending_bytes_limit = 67108864

  ## Max undelivered messages
  ## This plugin uses tracking metrics, which ensure messages are read to
  ## outputs before acknowledging them to the original broker to ensure data
  ## is not lost. This option sets the maximum messages to read from the
  ## broker that have not been written by an output.
  ##
  ## This value needs to be picked with awareness of the agent's
  ## metric_batch_size value as well. Setting max undelivered messages too high
  ## can result in a constant stream of data batches to the output. While
  ## setting it too low may never flush the broker's messages.
  # max_undelivered_messages = 1000

  ## Data format to consume.
  ## Each data format has its own unique set of configuration options, read
  ## more about them here:
  ## https://github.com/influxdata/telegraf/blob/master/docs/DATA_FORMATS_INPUT.md
  data_format = "influx"

Librato

[[outputs.librato]]
  ## Librato API Docs
  ## http://dev.librato.com/v1/metrics-authentication
  ## Librato API user
  api_user = "[email protected]" # required.
  ## Librato API token
  api_token = "my-secret-token" # required.
  ## Debug
  # debug = false
  ## Connection timeout.
  # timeout = "5s"
  ## Output source Template (same as graphite buckets)
  ## see https://github.com/influxdata/telegraf/blob/master/docs/DATA_FORMATS_OUTPUT.md#graphite
  ## This template is used in librato's source (not metric's name)
  template = "host"

Input and output integration examples

NATS

  1. Real-Time Analytics Dashboard: Utilize the NATS plugin to gather metrics from various NATS subjects in real time and feed them into a centralized analytics dashboard. This setup allows for immediate visibility into live application performance, enabling teams to react swiftly to operational issues or performance degradation.

  2. Distributed System Monitoring: Deploy multiple instances of Telegraf configured with the NATS plugin across a distributed architecture. This approach allows teams to aggregate metrics from various microservices efficiently, providing a holistic view of system health and performance while ensuring no messages are dropped during transmission.

  3. Historical Message Recovery: Leverage the capabilities of NATS JetStream along with this plugin to recover and process historical messages after Telegraf has been restarted. This feature is particularly beneficial for applications that require high reliability, ensuring that no critical metrics are lost even in case of service disruptions.

  4. Dynamic Load Balancing: Implement a dynamic load balancing scenario where Telegraf instances consume messages from a NATS cluster based on load. Adjust the queue group settings to control the number of active consumers, allowing for better resource utilization and performance scaling as demand fluctuations occur.

Librato

  1. Real-time Application Monitoring: Utilize Librato to collect performance metrics from a web application in real-time. This setup involves sending response times, error rates, and user interactions to Librato, allowing developers to monitor the application’s health and performance metrics closely. By analyzing these metrics, teams can quickly identify and address performance bottlenecks or application failures before they impact end users.

  2. Infrastructure Metrics Aggregation: Leverage this plugin to gather and send metrics from various infrastructure components, such as servers or containers, to Librato for centralized monitoring. Configuring the plugin to send CPU, memory usage, and disk I/O metrics enables system administrators to have a comprehensive view of infrastructure performance, assisting in capacity planning and resource optimization strategies.

  3. Custom Metrics for Business Operations: Feed business-specific metrics, such as sales transactions or user sign-ups, to the Librato service using this plugin. By tracking these custom metrics, businesses can gain insights into their operational performance and make data-driven decisions to enhance their strategies, marketing efforts, or product development initiatives.

  4. Anomaly Detection in Metrics: Implement monitoring tools that utilize machine learning for anomaly detection. By continuously sending real-time metrics to Librato, teams can analyze trends and automatically flag unusual behavior, such as sudden spikes in latency or unusual traffic patterns, enabling timely intervention and troubleshooting.

Feedback

Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Related Integrations

HTTP and InfluxDB Integration

The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.

View Integration

Kafka and InfluxDB Integration

This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.

View Integration

Kinesis and InfluxDB Integration

The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.

View Integration