Netflow and Graphite Integration
Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.
5B+
Telegraf downloads
#1
Time series database
Source: DB Engines
1B+
Downloads of InfluxDB
2,800+
Contributors
Table of Contents
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Input and output integration overview
The Netflow plugin is designed to collect traffic flow data from devices using the Netflow v5, v9 and IPFIX protocols. By capturing detailed flow information, this plugin supports network observability and analysis, enabling administrators to monitor traffic patterns and performance metrics effectively.
The Graphite plugin enables users to send metrics collected by Telegraf into Graphite via TCP. This integration allows for efficient storage and visualization of time-series data using Graphite’s powerful capabilities.
Integration details
Netflow
The Netflow plugin serves as a collector for flow data using protocols such as Netflow v5, Netflow v9, and IPFIX. This plugin allows users to gather important flow metrics from devices that support these protocols, including a variety of operational insights about traffic patterns, source/destination information, and protocol usage. The plugin leverages templates sent by flow devices to decode incoming data correctly, and it supports private enterprise number mappings for vendor-specific information. With features like adjustable service addresses and buffer sizes, the plugin provides flexibility in how it can be deployed within various network architectures, making it an essential tool for network monitoring and analysis.
Graphite
This plugin writes metrics to Graphite via raw TCP, allowing for seamless integration of Telegraf collected metrics into the Graphite ecosystem. With this plugin, users can configure multiple TCP endpoints for load balancing, ensuring high availability and reliability in metric transmission. The ability to customize metric naming with prefixes and utilize various templating options enhances flexibility in how data is represented within Graphite. Additionally, support for Graphite tags and options for strict sanitization of metric names allow for robust data management, catering to the varying needs of users. This capability is essential for organizations looking to leverage Graphite’s powerful metrics storage and visualization while maintaining control over data representation.
Configuration
Netflow
[[inputs.netflow]]
## Address to listen for netflow,ipfix or sflow packets.
## example: service_address = "udp://:2055"
## service_address = "udp4://:2055"
## service_address = "udp6://:2055"
service_address = "udp://:2055"
## Set the size of the operating system's receive buffer.
## example: read_buffer_size = "64KiB"
## Uses the system's default if not set.
# read_buffer_size = ""
## Protocol version to use for decoding.
## Available options are
## "ipfix" -- IPFIX / Netflow v10 protocol (also works for Netflow v9)
## "netflow v5" -- Netflow v5 protocol
## "netflow v9" -- Netflow v9 protocol (also works for IPFIX)
## "sflow v5" -- sFlow v5 protocol
# protocol = "ipfix"
## Private Enterprise Numbers (PEN) mappings for decoding
## This option allows to specify vendor-specific mapping files to use during
## decoding.
# private_enterprise_number_files = []
## Log incoming packets for tracing issues
# log_level = "trace"
Graphite
# Configuration for Graphite server to send metrics to
[[outputs.graphite]]
## TCP endpoint for your graphite instance.
## If multiple endpoints are configured, the output will be load balanced.
## Only one of the endpoints will be written to with each iteration.
servers = ["localhost:2003"]
## Local address to bind when connecting to the server
## If empty or not set, the local address is automatically chosen.
# local_address = ""
## Prefix metrics name
prefix = ""
## Graphite output template
## see https://github.com/influxdata/telegraf/blob/master/docs/DATA_FORMATS_OUTPUT.md
template = "host.tags.measurement.field"
## Strict sanitization regex
## This is the default sanitization regex that is used on data passed to the
## graphite serializer. Users can add additional characters here if required.
## Be aware that the characters, '/' '@' '*' are always replaced with '_',
## '..' is replaced with '.', and '\' is removed even if added to the
## following regex.
# graphite_strict_sanitize_regex = '[^a-zA-Z0-9-:._=\p{L}]'
## Enable Graphite tags support
# graphite_tag_support = false
## Applied sanitization mode when graphite tag support is enabled.
## * strict - uses the regex specified above
## * compatible - allows for greater number of characters
# graphite_tag_sanitize_mode = "strict"
## Character for separating metric name and field for Graphite tags
# graphite_separator = "."
## Graphite templates patterns
## 1. Template for cpu
## 2. Template for disk*
## 3. Default template
# templates = [
# "cpu tags.measurement.host.field",
# "disk* measurement.field",
# "host.measurement.tags.field"
#]
## timeout in seconds for the write connection to graphite
# timeout = "2s"
## Optional TLS Config
# tls_ca = "/etc/telegraf/ca.pem"
# tls_cert = "/etc/telegraf/cert.pem"
# tls_key = "/etc/telegraf/key.pem"
## Use TLS but skip chain & host verification
# insecure_skip_verify = false
Input and output integration examples
Netflow
-
Traffic Analysis and Visualization: Use the Netflow plugin to collect traffic flow data and visualize it in real-time using an analytics platform. Administrators can create dashboards that display traffic patterns and anomalies, helping them understand bandwidth usage and user behavior.
-
Network Performance Optimization: Integrate the Netflow plugin with performance monitoring tools to identify bottlenecks and optimize the network. Analyze collected metrics to pinpoint areas where network resources can be improved, enhancing overall system performance.
-
Anomaly Detection for Security: Leverage the Netflow data for security analysis by feeding it into an anomaly detection system. This can help identify unusual traffic patterns that may indicate potential security threats, enabling quicker responses to prevent breaches.
-
Customized Alerts for Network Events: Configure threshold-based alerts using the Netflow plugin metrics to notify network administrators of unusual spikes or drops in traffic. This proactive monitoring can help in quickly addressing potential issues before they escalate.
Graphite
-
Dynamic Metric Visualization: The Graphite plugin can be utilized to feed real-time metrics from various sources, such as application performance data or server health metrics, into Graphite. This dynamic integration allows teams to create interactive dashboards that visualize key performance indicators, track trends over time, and make data-driven decisions to enhance system performance.
-
Load Balanced Metrics Collection: By configuring multiple TCP endpoints within the plugin, organizations can implement load balancing for metric transmission. This use case ensures that metric delivery is both resilient and efficient, reducing the risk of data loss during high-traffic periods and maintaining a reliable flow of information to Graphite.
-
Customized Metrics Tagging: With support for Graphite tags, users can employ the Graphite plugin to enhance the granularity of their metrics. Tagging metrics with relevant information, such as application environment or service type, allows for more refined queries and analytics, enabling teams to drill down into specific areas of interest for better operational insights.
-
Enhanced Data Sanitization: Leveraging the plugin’s strict sanitization options, users can ensure that their metric names comply with Graphite’s requirements. This proactive measure eliminates potential issues arising from invalid characters in metric names, allowing for cleaner data management and more accurate visualizations.
Feedback
Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Related Integrations
Related Integrations
HTTP and InfluxDB Integration
The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.
View IntegrationKafka and InfluxDB Integration
This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.
View IntegrationKinesis and InfluxDB Integration
The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.
View Integration