Netflow and M3DB Integration
Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.
5B+
Telegraf downloads
#1
Time series database
Source: DB Engines
1B+
Downloads of InfluxDB
2,800+
Contributors
Table of Contents
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Input and output integration overview
The Netflow plugin is designed to collect traffic flow data from devices using the Netflow v5, v9 and IPFIX protocols. By capturing detailed flow information, this plugin supports network observability and analysis, enabling administrators to monitor traffic patterns and performance metrics effectively.
This plugin allows Telegraf to stream metrics to M3DB using the Prometheus Remote Write protocol, enabling scalable ingestion through the M3 Coordinator.
Integration details
Netflow
The Netflow plugin serves as a collector for flow data using protocols such as Netflow v5, Netflow v9, and IPFIX. This plugin allows users to gather important flow metrics from devices that support these protocols, including a variety of operational insights about traffic patterns, source/destination information, and protocol usage. The plugin leverages templates sent by flow devices to decode incoming data correctly, and it supports private enterprise number mappings for vendor-specific information. With features like adjustable service addresses and buffer sizes, the plugin provides flexibility in how it can be deployed within various network architectures, making it an essential tool for network monitoring and analysis.
M3DB
This configuration uses Telegraf’s HTTP output plugin with prometheusremotewrite
format to send metrics directly to M3DB through the M3 Coordinator. M3DB is a distributed time series database designed for scalable, high-throughput metric storage. It supports ingestion of Prometheus remote write data via its Coordinator component, which manages translation and routing into the M3DB cluster. This approach enables organizations to collect metrics from systems that aren’t natively instrumented for Prometheus (e.g., Windows, SNMP, legacy systems) and ingest them efficiently into M3’s long-term, high-performance storage engine. The setup is ideal for high-scale observability stacks with Prometheus compatibility requirements.
Configuration
Netflow
[[inputs.netflow]]
## Address to listen for netflow,ipfix or sflow packets.
## example: service_address = "udp://:2055"
## service_address = "udp4://:2055"
## service_address = "udp6://:2055"
service_address = "udp://:2055"
## Set the size of the operating system's receive buffer.
## example: read_buffer_size = "64KiB"
## Uses the system's default if not set.
# read_buffer_size = ""
## Protocol version to use for decoding.
## Available options are
## "ipfix" -- IPFIX / Netflow v10 protocol (also works for Netflow v9)
## "netflow v5" -- Netflow v5 protocol
## "netflow v9" -- Netflow v9 protocol (also works for IPFIX)
## "sflow v5" -- sFlow v5 protocol
# protocol = "ipfix"
## Private Enterprise Numbers (PEN) mappings for decoding
## This option allows to specify vendor-specific mapping files to use during
## decoding.
# private_enterprise_number_files = []
## Log incoming packets for tracing issues
# log_level = "trace"
M3DB
# Configuration for sending metrics to M3
[outputs.http]
## URL is the address to send metrics to
url = "https://M3_HOST:M3_PORT/api/v1/prom/remote/write"
## HTTP Basic Auth credentials
username = "admin"
password = "password"
## Data format to output.
data_format = "prometheusremotewrite"
## Outgoing HTTP headers
[outputs.http.headers]
Content-Type = "application/x-protobuf"
Content-Encoding = "snappy"
X-Prometheus-Remote-Write-Version = "0.1.0"
Input and output integration examples
Netflow
-
Traffic Analysis and Visualization: Use the Netflow plugin to collect traffic flow data and visualize it in real-time using an analytics platform. Administrators can create dashboards that display traffic patterns and anomalies, helping them understand bandwidth usage and user behavior.
-
Network Performance Optimization: Integrate the Netflow plugin with performance monitoring tools to identify bottlenecks and optimize the network. Analyze collected metrics to pinpoint areas where network resources can be improved, enhancing overall system performance.
-
Anomaly Detection for Security: Leverage the Netflow data for security analysis by feeding it into an anomaly detection system. This can help identify unusual traffic patterns that may indicate potential security threats, enabling quicker responses to prevent breaches.
-
Customized Alerts for Network Events: Configure threshold-based alerts using the Netflow plugin metrics to notify network administrators of unusual spikes or drops in traffic. This proactive monitoring can help in quickly addressing potential issues before they escalate.
M3DB
-
Large-Scale Cloud Infrastructure Monitoring: Deploy Telegraf agents across thousands of virtual machines and containers to collect metrics and stream them into M3DB through the M3 Coordinator. This provides reliable, long-term visibility with minimal storage overhead and high availability.
-
Legacy System Metrics Ingestion: Use Telegraf to gather metrics from older systems that lack native Prometheus exporters (e.g., Windows servers, SNMP devices) and forward them to M3DB via remote write. This bridges modern observability workflows with legacy infrastructure.
-
Centralized App Telemetry Aggregation: Collect application-specific telemetry using Telegraf’s plugin ecosystem (e.g.,
exec
,http
,jolokia
) and push it into M3DB for centralized storage and query via PromQL. This enables unified analytics across diverse data sources. -
Hybrid Cloud Observability: Install Telegraf agents on-prem and in the cloud to collect and remote-write metrics into a centralized M3DB cluster. This ensures consistent visibility across environments while avoiding the complexity of running Prometheus federation layers.
Feedback
Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Related Integrations
Related Integrations
HTTP and InfluxDB Integration
The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.
View IntegrationKafka and InfluxDB Integration
This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.
View IntegrationKinesis and InfluxDB Integration
The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.
View Integration