Netflow and Microsoft Fabric Integration

Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.

info

This is not the recommended configuration for real-time query at scale. For query and compression optimization, high-speed ingest, and high availability, you may want to consider using the Netflow plugin with InfluxDB.

5B+

Telegraf downloads

#1

Time series database
Source: DB Engines

1B+

Downloads of InfluxDB

2,800+

Contributors

Table of Contents

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Input and output integration overview

The Netflow plugin is designed to collect traffic flow data from devices using the Netflow v5, v9 and IPFIX protocols. By capturing detailed flow information, this plugin supports network observability and analysis, enabling administrators to monitor traffic patterns and performance metrics effectively.

The Microsoft Fabric plugin writes metrics to Real time analytics in Fabric services, enabling powerful data storage and analysis capabilities.

Integration details

Netflow

The Netflow plugin serves as a collector for flow data using protocols such as Netflow v5, Netflow v9, and IPFIX. This plugin allows users to gather important flow metrics from devices that support these protocols, including a variety of operational insights about traffic patterns, source/destination information, and protocol usage. The plugin leverages templates sent by flow devices to decode incoming data correctly, and it supports private enterprise number mappings for vendor-specific information. With features like adjustable service addresses and buffer sizes, the plugin provides flexibility in how it can be deployed within various network architectures, making it an essential tool for network monitoring and analysis.

Microsoft Fabric

This plugin allows you to leverage Microsoft Fabric’s capabilities to store and analyze your Telegraf metrics. Eventhouse is a high-performance, scalable data-store designed for real-time analytics. It allows you to ingest, store and query large volumes of data with low latency. The plugin supports both events and metrics with versatile grouping options. It provides various configuration parameters including connection strings specifying details like the data source, ingestion types, and which tables to use for storage. With support for streaming ingestion and event streams, this plugin enables seamless integration and data flow into Microsoft’s analytics ecosystem, allowing for rich data querying capabilities and near-real-time processing.

Configuration

Netflow

[[inputs.netflow]]
  ## Address to listen for netflow,ipfix or sflow packets.
  ##   example: service_address = "udp://:2055"
  ##            service_address = "udp4://:2055"
  ##            service_address = "udp6://:2055"
  service_address = "udp://:2055"

  ## Set the size of the operating system's receive buffer.
  ##   example: read_buffer_size = "64KiB"
  ## Uses the system's default if not set.
  # read_buffer_size = ""

  ## Protocol version to use for decoding.
  ## Available options are
  ##   "ipfix"      -- IPFIX / Netflow v10 protocol (also works for Netflow v9)
  ##   "netflow v5" -- Netflow v5 protocol
  ##   "netflow v9" -- Netflow v9 protocol (also works for IPFIX)
  ##   "sflow v5"   -- sFlow v5 protocol
  # protocol = "ipfix"

  ## Private Enterprise Numbers (PEN) mappings for decoding
  ## This option allows to specify vendor-specific mapping files to use during
  ## decoding.
  # private_enterprise_number_files = []

  ## Log incoming packets for tracing issues
  # log_level = "trace"

Microsoft Fabric

[[outputs.microsoft_fabric]]
  ## The URI property of the resource on Azure
  connection_string = "https://trd-abcd.xx.kusto.fabric.microsoft.com;Database=kusto_eh;Table Name=telegraf_dump;Key=value"

  ## Client timeout
  # timeout = "30s"

Input and output integration examples

Netflow

  1. Traffic Analysis and Visualization: Use the Netflow plugin to collect traffic flow data and visualize it in real-time using an analytics platform. Administrators can create dashboards that display traffic patterns and anomalies, helping them understand bandwidth usage and user behavior.

  2. Network Performance Optimization: Integrate the Netflow plugin with performance monitoring tools to identify bottlenecks and optimize the network. Analyze collected metrics to pinpoint areas where network resources can be improved, enhancing overall system performance.

  3. Anomaly Detection for Security: Leverage the Netflow data for security analysis by feeding it into an anomaly detection system. This can help identify unusual traffic patterns that may indicate potential security threats, enabling quicker responses to prevent breaches.

  4. Customized Alerts for Network Events: Configure threshold-based alerts using the Netflow plugin metrics to notify network administrators of unusual spikes or drops in traffic. This proactive monitoring can help in quickly addressing potential issues before they escalate.

Microsoft Fabric

  1. Real-time Monitoring Dashboards: Utilize the Microsoft Fabric plugin to feed live metrics from your applications into a real-time dashboard on Microsoft Fabric. This allows teams to visualize key performance indicators instantly, enabling quick decision-making and timely responses to performance issues.

  2. Automated Data Ingestion from IoT Devices: Use this plugin in scenarios where metrics from IoT devices need to be ingested into Azure for analysis. Using the plugin’s capabilities, data can be streamed continuously, facilitating real-time analytics and reporting without complex coding efforts.

  3. Cross-Platform Data Aggregation: Leverage the plugin to consolidate metrics from multiple systems and applications into a single Azure Data Explorer table. This use case enables easier data management and analysis by centralizing disparate data sources within a unified analytics framework.

  4. Enhanced Event Transformation Workflows: Integrate the plugin with Eventstreams to facilitate real-time event ingestion and transformation. By configuring different metrics and partition keys, users can manipulate the flow of data as it enters the system, allowing for advanced processing before the data reaches its final destination.

Feedback

Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Related Integrations

HTTP and InfluxDB Integration

The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.

View Integration

Kafka and InfluxDB Integration

This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.

View Integration

Kinesis and InfluxDB Integration

The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.

View Integration