Hashicorp Nomad and Apache Hudi Integration

Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.

info

This is not the recommended configuration for real-time query at scale. For query and compression optimization, high-speed ingest, and high availability, you may want to consider Nomad and InfluxDB.

5B+

Telegraf downloads

#1

Time series database
Source: DB Engines

1B+

Downloads of InfluxDB

2,800+

Contributors

Table of Contents

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Input and output integration overview

This plugin allows users to collect metrics from Hashicorp Nomad agents in distributed environments.

Writes metrics to Parquet files via Telegraf’s Parquet output plugin, preparing them for ingestion into Apache Hudi’s lakehouse architecture.

Integration details

Hashicorp Nomad

The Hashicorp Nomad input plugin is designed to gather metrics from every Nomad agent within a cluster. By deploying Telegraf on each node, it can connect to the local Nomad agent, typically available at ‘http://127.0.0.1:4646’. With this setup, users can systematically collect and monitor metrics related to the performance and status of their Nomad environment, ensuring they maintain a healthy and efficient cluster operational state. This plugin enables visibility into the operational aspects of Nomad, which is essential for maintaining reliable cloud infrastructure.

Apache Hudi

This configuration leverages Telegraf’s Parquet plugin to serialize metrics into columnar Parquet files suitable for downstream ingestion by Apache Hudi. The plugin writes metrics grouped by metric name into files in a specified directory, buffering writes for efficiency and optionally rotating files on timers. It considers schema compatibility—metrics with incompatible schemas are dropped—ensuring consistency. Apache Hudi can then consume these Parquet files via tools like DeltaStreamer or Spark jobs, enabling transactional ingestion, time-travel queries, and upserts on your time series data.

Configuration

Hashicorp Nomad

[[inputs.nomad]]
  ## URL for the Nomad agent
  # url = "http://127.0.0.1:4646"

  ## Set response_timeout (default 5 seconds)
  # response_timeout = "5s"

  ## Optional TLS Config
  # tls_ca = /path/to/cafile
  # tls_cert = /path/to/certfile
  # tls_key = /path/to/keyfile

Apache Hudi

[[outputs.parquet]]
  ## Directory to write parquet files in. If a file already exists the output
  ## will attempt to continue using the existing file.
  directory = "/var/lib/telegraf/hudi_metrics"

  ## File rotation interval (default is no rotation)
  # rotation_interval = "1h"

  ## Buffer size before writing (default is 1000 metrics)
  # buffer_size = 1000

  ## Optional: compression codec (snappy, gzip, etc.)
  # compression_codec = "snappy"

  ## When grouping metrics, each metric name goes to its own file
  ## If a metric’s schema doesn’t match the existing schema, it will be dropped

Input and output integration examples

Hashicorp Nomad

  1. Cluster Health Monitoring: Use the Hashicorp Nomad plugin to aggregate metrics across all nodes in a Nomad deployment. By monitoring health metrics such as allocation status, job performance, and resource utilization, operations teams can gain insights into the overall health of their deployment, quickly identify and resolve issues, and optimize resource allocation based on real-time data.

  2. Performance Analytics for Job Execution: Leverage the metrics provided by Nomad to analyze job execution times and resource consumption. This use case enables developers to adjust job parameters effectively, optimize task performance, and illustrate trends over time, ultimately leading to increased efficiency and reduced costs in resource allocation.

  3. Alerting on Critical Conditions: Implement alerting mechanisms based on metrics scraped from Nomad agents. By setting thresholds for critical metrics like CPU usage or failed job allocations, teams can proactively respond to potential issues before they escalate, ensuring higher uptime and reliability for applications running on the Nomad platform.

  4. Integration with Visualization Tools: Use the data collected by the Hashicorp Nomad plugin to feed into visualization tools for real-time dashboards. This setup allows teams to monitor cluster workloads, job states, and system performance at a glance, facilitating better decision-making and strategic planning based on visual insights into the Nomad environment.

Apache Hudi

  1. Transactional Lakehouse Metrics: Buffer and write Web service metrics as Parquet files for DeltaStreamer to ingest into Hudi, enabling upserts, ACID compliance, and time-travel on historical performance data.

  2. Edge Device Batch Analytics: Telegraf running on IoT gateways writes metrics to Parquet locally, where periodic Spark jobs ingest them into Hudi for long-term analytics and traceability.

  3. Schema-Enforced Abnormal Metric Handling: Use Parquet plugin’s strict schema-dropping behavior to prevent malformed or unexpected metric changes. Hudi ingestion then guarantees consistent schema and data quality in downstream datasets.

  4. Data Platform Integration: Store Telegraf metrics as Parquet files in an S3/ADLS landing zone. Hudi’s Spark-based ingestion pipeline then loads them into a unified, queryable lakehouse with business events and logs.

Feedback

Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Related Integrations

HTTP and InfluxDB Integration

The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.

View Integration

Kafka and InfluxDB Integration

This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.

View Integration

Kinesis and InfluxDB Integration

The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.

View Integration