NSQ and Databricks Integration
Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.
5B+
Telegraf downloads
#1
Time series database
Source: DB Engines
1B+
Downloads of InfluxDB
2,800+
Contributors
Table of Contents
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Input and output integration overview
The NSQ Telegraf plugin reads metrics from the NSQD messaging system, allowing for real-time data processing and monitoring.
Use Telegraf’s HTTP output plugin to push metrics straight into a Databricks Lakehouse by calling the SQL Statement Execution API with a JSON-wrapped INSERT or volume PUT command.
Integration details
NSQ
The NSQ plugin interfaces with NSQ, a real-time messaging platform, enabling the reading of messages from NSQD. This plugin is categorized as a service plugin, meaning it actively listens for metrics and events rather than polling them at regular intervals. With an emphasis on reliability, it prevents data loss by tracking undelivered messages until they are acknowledged by outputs. The plugin allows for configurations such as specifying NSQLookupd endpoints, topics, and channels, and it supports multiple data formats for flexibility in data handling.
Databricks
This configuration turns Telegraf into a lightweight ingestion agent for the Databricks Lakehouse. It leverages the Databricks SQL Statement Execution API 2.0, which accepts authenticated POST requests containing a JSON payload with a statement
field. Each Telegraf flush dynamically renders a SQL INSERT (or, for file-based workflows, a PUT ... INTO /Volumes/...
command) that lands the metrics into a Unity Catalog table or volume governed by Lakehouse security. Under the hood Databricks stores successful inserts as Delta Lake transactions, enabling ACID guarantees, time-travel, and scalable analytics. Operators can point the warehouse_id
at any serverless or classic SQL warehouse, and all authentication is handled with a PAT or service-principal token—no agents or JDBC drivers required. Because Telegraf’s HTTP output supports custom headers, batching, TLS, and proxy settings, the same pattern scales from edge IoT gateways to container sidecars, consolidating infrastructure telemetry, application logs, or business KPIs directly into the Lakehouse for BI, ML, and Lakehouse Monitoring. Unity Catalog volumes provide a governed staging layer when file uploads and COPY INTO
are preferred, and the approach aligns with Databricks’ recommended ingestion practices for partners and ISVs.
Configuration
NSQ
# Read metrics from NSQD topic(s)
[[inputs.nsq_consumer]]
## Server option still works but is deprecated, we just prepend it to the nsqd array.
# server = "localhost:4150"
## An array representing the NSQD TCP HTTP Endpoints
nsqd = ["localhost:4150"]
## An array representing the NSQLookupd HTTP Endpoints
nsqlookupd = ["localhost:4161"]
topic = "telegraf"
channel = "consumer"
max_in_flight = 100
## Max undelivered messages
## This plugin uses tracking metrics, which ensure messages are read to
## outputs before acknowledging them to the original broker to ensure data
## is not lost. This option sets the maximum messages to read from the
## broker that have not been written by an output.
##
## This value needs to be picked with awareness of the agent's
## metric_batch_size value as well. Setting max undelivered messages too high
## can result in a constant stream of data batches to the output. While
## setting it too low may never flush the broker's messages.
# max_undelivered_messages = 1000
## Data format to consume.
## Each data format has its own unique set of configuration options, read
## more about them here:
## https://github.com/influxdata/telegraf/blob/master/docs/DATA_FORMATS_INPUT.md
data_format = "influx"
Databricks
[[outputs.http]]
## Databricks SQL Statement Execution API endpoint
url = "https://{{ env "DATABRICKS_HOST" }}/api/2.0/sql/statements"
## Use POST to submit each Telegraf batch as a SQL request
method = "POST"
## Personal-access token (PAT) for workspace or service principal
headers = { Authorization = "Bearer {{ env "DATABRICKS_TOKEN" }}" }
## Send JSON that wraps the metrics batch in a SQL INSERT (or PUT into a Volume)
content_type = "application/json"
## Serialize metrics as JSON so they can be embedded in the SQL statement
data_format = "json"
json_timestamp_units = "1ms"
## Build the request body. Telegraf replaces the template variables at runtime.
## Example inserts a row per metric into a Unity-Catalog table.
body_template = """
{
\"statement\": \"INSERT INTO ${TARGET_TABLE} VALUES {{range .Metrics}}(from_unixtime({{.timestamp}}/1000), {{.fields.usage}}, '{{.tags.host}}'){{end}}\",
\"warehouse_id\": \"${WAREHOUSE_ID}\"
}
"""
## Optional: add batching limits or TLS settings
# batch_size = 500
# timeout = "10s"
Input and output integration examples
NSQ
-
Real-Time Analytics Dashboard: Integrate this plugin with a visualization tool to create a dashboard that displays real-time metrics from various topics in NSQ. By subscribing to specific topics, users can monitor system health and application performance dynamically, allowing for immediate insights and timely responses to any anomalies.
-
Event-Driven Automation: Combine NSQ with a serverless architecture to trigger automated workflows based on incoming messages. This use case could involve processing data for machine learning models or responding to user actions in applications, thus streamlining operations and enhancing user experience through rapid processing.
-
Multi-Service Communication Hub: Use the NSQ plugin to act as a centralized messaging hub among different microservices in a distributed architecture. By enabling services to communicate through NSQ, developers can ensure reliable message delivery while maintaining decoupled service interactions, significantly improving scalability and resilience.
-
Metrics Aggregation for Enhanced Monitoring: Implement the NSQ plugin to aggregate metrics from multiple sources before sending them to an analytics tool. This setup enables businesses to consolidate data from various applications and services, creating a unified view for better decision-making and strategic planning.
Databricks
- Edge-to-Lakehouse Telemetry Pipe: Deploy Telegraf on factory PLCs to sample vibration metrics and post them every second to a serverless SQL warehouse. Delta tables power PowerBI dashboards that alert engineers when thresholds drift.
- Blue-Green CI/CD Rollout Metrics: Attach a Telegraf sidecar to each Kubernetes canary pod; it inserts container stats into a Unity Catalog table tagged by
deployment_id
, letting Databricks SQL compare error-rate percentiles and auto-rollback underperforming versions. - SaaS Usage Metering: Insert per-tenant API-call counters via the HTTP plugin; a nightly Lakehouse query aggregates usage into invoices, eliminating custom metering micro-services.
- Security Forensics Lake: Upload JSON batches of Suricata IDS events to a Unity Catalog volume using
PUT
commands, then runCOPY INTO
for near-real-time enrichment with Delta Live Tables, producing a searchable threat-intel lake that joins network logs with user session data.
Feedback
Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Related Integrations
Related Integrations
HTTP and InfluxDB Integration
The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.
View IntegrationKafka and InfluxDB Integration
This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.
View IntegrationKinesis and InfluxDB Integration
The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.
View Integration