ntpq and Datadog Integration

Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.

info

This is not the recommended configuration for real-time query at scale. For query and compression optimization, high-speed ingest, and high availability, you may want to consider using the ntpq plugin with InfluxDB.

5B+

Telegraf downloads

#1

Time series database
Source: DB Engines

1B+

Downloads of InfluxDB

2,800+

Contributors

Table of Contents

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Input and output integration overview

The ntpq plugin collects standard metrics related to the Network Time Protocol (NTP) by executing the ntpq command. It gathers essential information about the synchronization state of the local machine with remote NTP servers, providing valuable insights into timekeeping accuracy and network performance.

The Datadog Telegraf Plugin enables the submission of metrics to the Datadog Metrics API, facilitating efficient monitoring and data analysis through a reliable metric ingestion process.

Integration details

ntpq

The ntpq Telegraf plugin provides a way to gather metrics from the Network Time Protocol (NTP) by querying the NTP server using the ntpq executable. This plugin collects a variety of metrics related to the synchronization status with remote NTP servers, including delay, jitter, offset, polling frequency, and reachability. These metrics are crucial for understanding the performance and reliability of time synchronization efforts in systems that rely on accurate timekeeping. NTP plays a vital role in networked environments, enabling synchronized clocks across devices which is essential for logging, coordination of activities, and security protocols. Through this plugin, users can monitor the effectiveness of their time synchronization processes, making it easier to identify issues related to network delays or misconfigurations, thus ensuring that systems remain in sync and operate efficiently.

Datadog

This plugin writes to the Datadog Metrics API, enabling users to send metrics for monitoring and performance analysis. By utilizing the Datadog API key, users can configure the plugin to establish a connection with Datadog’s v1 API. The plugin supports various configuration options including connection timeouts, HTTP proxy settings, and data compression methods, ensuring adaptability to different deployment environments. The ability to transform count metrics into rates enhances the integration of Telegraf with Datadog agents, particularly beneficial for applications that rely on real-time performance metrics.

Configuration

ntpq

[[inputs.ntpq]]
  ## Servers to query with ntpq.
  ## If no server is given, the local machine is queried.
  # servers = []

  ## If false, set the -n ntpq flag. Can reduce metric gather time.
  ## DEPRECATED since 1.24.0: add '-n' to 'options' instead to skip DNS lookup
  # dns_lookup = true

  ## Options to pass to the ntpq command.
  # options = "-p"

  ## Output format for the 'reach' field.
  ## Available values are
  ##   octal   --  output as is in octal representation e.g. 377 (default)
  ##   decimal --  convert value to decimal representation e.g. 371 -> 249
  ##   count   --  count the number of bits in the value. This represents
  ##               the number of successful reaches, e.g. 37 -> 5
  ##   ratio   --  output the ratio of successful attempts e.g. 37 -> 5/8 = 0.625
  # reach_format = "octal"

Datadog

[[outputs.datadog]]
  ## Datadog API key
  apikey = "my-secret-key"

  ## Connection timeout.
  # timeout = "5s"

  ## Write URL override; useful for debugging.
  ## This plugin only supports the v1 API currently due to the authentication
  ## method used.
  # url = "https://app.datadoghq.com/api/v1/series"

  ## Set http_proxy
  # use_system_proxy = false
  # http_proxy_url = "http://localhost:8888"

  ## Override the default (none) compression used to send data.
  ## Supports: "zlib", "none"
  # compression = "none"

  ## When non-zero, converts count metrics submitted by inputs.statsd
  ## into rate, while dividing the metric value by this number.
  ## Note that in order for metrics to be submitted simultaenously alongside
  ## a Datadog agent, rate_interval has to match the interval used by the
  ## agent - which defaults to 10s
  # rate_interval = 0s

Input and output integration examples

ntpq

  1. Network Time Monitoring Dashboard: Utilize the ntpq plugin to create a centralized monitoring dashboard for tracking the reliability and performance of network time synchronization across multiple servers. By visualizing metrics such as delay and jitter, system administrators can quickly identify which servers are providing accurate time versus those with significant latency issues, ensuring that all systems remain synchronized effectively.

  2. Automated Alert System for Time Drift: Implement an automated alert system that leverages ntpq metrics to notify operations teams when time drift exceeds acceptable thresholds. By analyzing the offset and jitter values, the system can trigger alerts if any remote NTP server is out of sync, allowing for swift remediation actions to maintain time accuracy across critical infrastructure.

  3. Comparative Analysis of Time Sources: Use the ntpq plugin to perform a comparative analysis of different NTP servers over time. By querying multiple NTP sources and monitoring their metrics, organizations can evaluate the performance and reliability of their time sources, making informed decisions about which NTP servers to configure as primary or secondary in their environments.

  4. Historical Performance Tracking for NTP: Gather historical performance data on various NTP servers using the ntpq plugin, enabling long-term trend analysis for timekeeping accuracy. This can help organizations identify patterns or recurring issues related to specific servers, informing future decisions about infrastructure changes or adjustments related to time synchronization strategies.

Datadog

  1. Real-Time Infrastructure Monitoring: Use the Datadog plugin to monitor server metrics in real-time by sending CPU usage and memory statistics directly to Datadog. This integration allows IT teams to visualize and analyze system performance metrics in a centralized dashboard, enabling proactive response to any emerging issues, such as resource bottlenecks or server overloads.

  2. Application Performance Tracking: Leverage this plugin to submit application-specific metrics, such as request counts and error rates, to Datadog. By integrating with application monitoring tools, teams can correlate infrastructure metrics with application performance, providing insights that enable them to optimize code performance and improve user experience.

  3. Anomaly Detection in Metrics: Configure the Datadog plugin to send metrics that can trigger alerts and notifications based on unusual patterns detected by Datadog’s machine learning features. This proactive monitoring helps teams swiftly react to potential outages or performance degradation before customers are impacted.

  4. Integrating with Cloud Services: By utilizing the Datadog plugin to send metrics from cloud resources, IT teams can gain visibility into cloud application performance. Monitoring metrics like latency and error rates helps with ensuring service-level agreements (SLAs) are met and also assists in optimizing resource allocation across cloud environments.

Feedback

Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Related Integrations

HTTP and InfluxDB Integration

The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.

View Integration

Kafka and InfluxDB Integration

This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.

View Integration

Kinesis and InfluxDB Integration

The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.

View Integration