ntpq and IoTDB Integration
Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.
5B+
Telegraf downloads
#1
Time series database
Source: DB Engines
1B+
Downloads of InfluxDB
2,800+
Contributors
Table of Contents
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Input and output integration overview
The ntpq plugin collects standard metrics related to the Network Time Protocol (NTP) by executing the ntpq command. It gathers essential information about the synchronization state of the local machine with remote NTP servers, providing valuable insights into timekeeping accuracy and network performance.
This plugin saves Telegraf metrics to an Apache IoTDB backend, supporting session connection and data insertion.
Integration details
ntpq
The ntpq Telegraf plugin provides a way to gather metrics from the Network Time Protocol (NTP) by querying the NTP server using the ntpq
executable. This plugin collects a variety of metrics related to the synchronization status with remote NTP servers, including delay, jitter, offset, polling frequency, and reachability. These metrics are crucial for understanding the performance and reliability of time synchronization efforts in systems that rely on accurate timekeeping. NTP plays a vital role in networked environments, enabling synchronized clocks across devices which is essential for logging, coordination of activities, and security protocols. Through this plugin, users can monitor the effectiveness of their time synchronization processes, making it easier to identify issues related to network delays or misconfigurations, thus ensuring that systems remain in sync and operate efficiently.
IoTDB
Apache IoTDB (Database for Internet of Things) is an IoT native database with high performance for data management and analysis, deployable on the edge and the cloud. Its light-weight architecture, high performance, and rich feature set create a perfect fit for massive data storage, high-speed data ingestion, and complex analytics in the IoT industrial fields. IoTDB deeply integrates with Apache Hadoop, Spark, and Flink, which further enhances its capabilities in handling large scale data and sophisticated processing tasks.
Configuration
ntpq
[[inputs.ntpq]]
## Servers to query with ntpq.
## If no server is given, the local machine is queried.
# servers = []
## If false, set the -n ntpq flag. Can reduce metric gather time.
## DEPRECATED since 1.24.0: add '-n' to 'options' instead to skip DNS lookup
# dns_lookup = true
## Options to pass to the ntpq command.
# options = "-p"
## Output format for the 'reach' field.
## Available values are
## octal -- output as is in octal representation e.g. 377 (default)
## decimal -- convert value to decimal representation e.g. 371 -> 249
## count -- count the number of bits in the value. This represents
## the number of successful reaches, e.g. 37 -> 5
## ratio -- output the ratio of successful attempts e.g. 37 -> 5/8 = 0.625
# reach_format = "octal"
IoTDB
[[outputs.iotdb]]
## Configuration of IoTDB server connection
host = "127.0.0.1"
# port = "6667"
## Configuration of authentication
# user = "root"
# password = "root"
## Timeout to open a new session.
## A value of zero means no timeout.
# timeout = "5s"
## Configuration of type conversion for 64-bit unsigned int
## IoTDB currently DOES NOT support unsigned integers (version 13.x).
## 32-bit unsigned integers are safely converted into 64-bit signed integers by the plugin,
## however, this is not true for 64-bit values in general as overflows may occur.
## The following setting allows to specify the handling of 64-bit unsigned integers.
## Available values are:
## - "int64" -- convert to 64-bit signed integers and accept overflows
## - "int64_clip" -- convert to 64-bit signed integers and clip the values on overflow to 9,223,372,036,854,775,807
## - "text" -- convert to the string representation of the value
# uint64_conversion = "int64_clip"
## Configuration of TimeStamp
## TimeStamp is always saved in 64bits int. timestamp_precision specifies the unit of timestamp.
## Available value:
## "second", "millisecond", "microsecond", "nanosecond"(default)
# timestamp_precision = "nanosecond"
## Handling of tags
## Tags are not fully supported by IoTDB.
## A guide with suggestions on how to handle tags can be found here:
## https://iotdb.apache.org/UserGuide/Master/API/InfluxDB-Protocol.html
##
## Available values are:
## - "fields" -- convert tags to fields in the measurement
## - "device_id" -- attach tags to the device ID
##
## For Example, a metric named "root.sg.device" with the tags `tag1: "private"` and `tag2: "working"` and
## fields `s1: 100` and `s2: "hello"` will result in the following representations in IoTDB
## - "fields" -- root.sg.device, s1=100, s2="hello", tag1="private", tag2="working"
## - "device_id" -- root.sg.device.private.working, s1=100, s2="hello"
# convert_tags_to = "device_id"
## Handling of unsupported characters
## Some characters in different versions of IoTDB are not supported in path name
## A guide with suggetions on valid paths can be found here:
## for iotdb 0.13.x -> https://iotdb.apache.org/UserGuide/V0.13.x/Reference/Syntax-Conventions.html#identifiers
## for iotdb 1.x.x and above -> https://iotdb.apache.org/UserGuide/V1.3.x/User-Manual/Syntax-Rule.html#identifier
##
## Available values are:
## - "1.0", "1.1", "1.2", "1.3" -- enclose in `` the world having forbidden character
## such as @ $ # : [ ] { } ( ) space
## - "0.13" -- enclose in `` the world having forbidden character
## such as space
##
## Keep this section commented if you don't want to sanitize the path
# sanitize_tag = "1.3"
Input and output integration examples
ntpq
-
Network Time Monitoring Dashboard: Utilize the ntpq plugin to create a centralized monitoring dashboard for tracking the reliability and performance of network time synchronization across multiple servers. By visualizing metrics such as delay and jitter, system administrators can quickly identify which servers are providing accurate time versus those with significant latency issues, ensuring that all systems remain synchronized effectively.
-
Automated Alert System for Time Drift: Implement an automated alert system that leverages ntpq metrics to notify operations teams when time drift exceeds acceptable thresholds. By analyzing the offset and jitter values, the system can trigger alerts if any remote NTP server is out of sync, allowing for swift remediation actions to maintain time accuracy across critical infrastructure.
-
Comparative Analysis of Time Sources: Use the ntpq plugin to perform a comparative analysis of different NTP servers over time. By querying multiple NTP sources and monitoring their metrics, organizations can evaluate the performance and reliability of their time sources, making informed decisions about which NTP servers to configure as primary or secondary in their environments.
-
Historical Performance Tracking for NTP: Gather historical performance data on various NTP servers using the ntpq plugin, enabling long-term trend analysis for timekeeping accuracy. This can help organizations identify patterns or recurring issues related to specific servers, informing future decisions about infrastructure changes or adjustments related to time synchronization strategies.
IoTDB
-
Real-Time IoT Monitoring: Utilize the IoTDB plugin to gather sensor data from various IoT devices and save it in an Apache IoTDB backend, facilitating real-time monitoring of environmental conditions such as temperature and humidity. This use case enables organizations to analyze trends over time and make informed decisions based on historical data, while also utilizing IoTDB’s efficient storage and querying capabilities.
-
Smart Agriculture Data Collection: Use the IoTDB plugin to collect metrics from smart agriculture sensors deployed in fields. By transmitting moisture levels, nutrient content, and atmospheric conditions to IoTDB, farmers can access detailed insights into optimal planting and watering schedules, thus improving crop yields and resource management.
-
Energy Consumption Analytics: Leverage the IoTDB plugin to track energy consumption metrics from smart meters across a utility network. This integration enables analytics to identify peaks in usage and predict future consumption patterns, ultimately supporting energy conservation initiatives and improved utility management.
-
Automated Industrial Equipment Monitoring: Use this plugin to gather operational metrics from machinery in a manufacturing plant and store them in IoTDB for analysis. This setup can help identify inefficiencies, predictive maintenance needs, and operational anomalies, ensuring optimal performance and minimizing unexpected downtimes.
Feedback
Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Related Integrations
Related Integrations
HTTP and InfluxDB Integration
The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.
View IntegrationKafka and InfluxDB Integration
This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.
View IntegrationKinesis and InfluxDB Integration
The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.
View Integration