ntpq and Mimir Integration

Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.

info

This is not the recommended configuration for real-time query at scale. For query and compression optimization, high-speed ingest, and high availability, you may want to consider using the ntpq plugin with InfluxDB.

5B+

Telegraf downloads

#1

Time series database
Source: DB Engines

1B+

Downloads of InfluxDB

2,800+

Contributors

Table of Contents

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Input and output integration overview

The ntpq plugin collects standard metrics related to the Network Time Protocol (NTP) by executing the ntpq command. It gathers essential information about the synchronization state of the local machine with remote NTP servers, providing valuable insights into timekeeping accuracy and network performance.

This plugin sends Telegraf metrics directly to Grafana’s Mimir database using HTTP, providing scalable and efficient long-term storage and analysis for Prometheus-compatible metrics.

Integration details

ntpq

The ntpq Telegraf plugin provides a way to gather metrics from the Network Time Protocol (NTP) by querying the NTP server using the ntpq executable. This plugin collects a variety of metrics related to the synchronization status with remote NTP servers, including delay, jitter, offset, polling frequency, and reachability. These metrics are crucial for understanding the performance and reliability of time synchronization efforts in systems that rely on accurate timekeeping. NTP plays a vital role in networked environments, enabling synchronized clocks across devices which is essential for logging, coordination of activities, and security protocols. Through this plugin, users can monitor the effectiveness of their time synchronization processes, making it easier to identify issues related to network delays or misconfigurations, thus ensuring that systems remain in sync and operate efficiently.

Mimir

Grafana Mimir supports the Prometheus Remote Write protocol, enabling Telegraf collected metrics to be efficiently ingested into Mimir clusters for large-scale, long-term storage. This integration leverages Prometheus’s well-established standards, allowing users to combine Telegraf’s extensive data collection capabilities with Mimir’s advanced features, such as query federation, multi-tenancy, high availability, and cost-efficient storage. Grafana Mimir’s architecture is optimized for handling high volumes of metric data and delivering fast query responses, making it ideal for complex monitoring environments and distributed systems.

Configuration

ntpq

[[inputs.ntpq]]
  ## Servers to query with ntpq.
  ## If no server is given, the local machine is queried.
  # servers = []

  ## If false, set the -n ntpq flag. Can reduce metric gather time.
  ## DEPRECATED since 1.24.0: add '-n' to 'options' instead to skip DNS lookup
  # dns_lookup = true

  ## Options to pass to the ntpq command.
  # options = "-p"

  ## Output format for the 'reach' field.
  ## Available values are
  ##   octal   --  output as is in octal representation e.g. 377 (default)
  ##   decimal --  convert value to decimal representation e.g. 371 -> 249
  ##   count   --  count the number of bits in the value. This represents
  ##               the number of successful reaches, e.g. 37 -> 5
  ##   ratio   --  output the ratio of successful attempts e.g. 37 -> 5/8 = 0.625
  # reach_format = "octal"

Mimir

[[outputs.http]]
  url = "http://data-load-balancer-backend-1:9009/api/v1/push"
  data_format = "prometheusremotewrite"
  username = "*****"
  password = "******"
  [outputs.http.headers]
     Content-Type = "application/x-protobuf"
     Content-Encoding = "snappy"
     X-Scope-OrgID = "****"

Input and output integration examples

ntpq

  1. Network Time Monitoring Dashboard: Utilize the ntpq plugin to create a centralized monitoring dashboard for tracking the reliability and performance of network time synchronization across multiple servers. By visualizing metrics such as delay and jitter, system administrators can quickly identify which servers are providing accurate time versus those with significant latency issues, ensuring that all systems remain synchronized effectively.

  2. Automated Alert System for Time Drift: Implement an automated alert system that leverages ntpq metrics to notify operations teams when time drift exceeds acceptable thresholds. By analyzing the offset and jitter values, the system can trigger alerts if any remote NTP server is out of sync, allowing for swift remediation actions to maintain time accuracy across critical infrastructure.

  3. Comparative Analysis of Time Sources: Use the ntpq plugin to perform a comparative analysis of different NTP servers over time. By querying multiple NTP sources and monitoring their metrics, organizations can evaluate the performance and reliability of their time sources, making informed decisions about which NTP servers to configure as primary or secondary in their environments.

  4. Historical Performance Tracking for NTP: Gather historical performance data on various NTP servers using the ntpq plugin, enabling long-term trend analysis for timekeeping accuracy. This can help organizations identify patterns or recurring issues related to specific servers, informing future decisions about infrastructure changes or adjustments related to time synchronization strategies.

Mimir

  1. Enterprise-Scale Kubernetes Monitoring: Integrate Telegraf with Grafana Mimir to stream metrics from Kubernetes clusters at enterprise scale. This enables comprehensive visibility, improved resource allocation, and proactive troubleshooting across hundreds of clusters, leveraging Mimir’s horizontal scalability and high availability.

  2. Multi-tenant SaaS Application Observability: Use this plugin to centralize metrics from diverse SaaS tenants into Grafana Mimir, enabling tenant isolation and accurate billing based on resource usage. This approach provides reliable observability, efficient cost management, and secure multi-tenancy support.

  3. Global Edge Network Performance Tracking: Stream latency and availability metrics from globally distributed edge servers into Grafana Mimir. Organizations can quickly identify performance degradation or outages, leveraging Mimir’s fast querying capabilities to ensure optimal service reliability and user experience.

  4. Real-Time Analytics for High-Volume Microservices: Implement Telegraf metrics collection in high-volume microservices architectures, feeding data into Grafana Mimir for real-time analytics and anomaly detection. Mimir’s powerful querying enables teams to detect anomalies and quickly respond, maintaining high service availability and performance.

Feedback

Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Related Integrations

HTTP and InfluxDB Integration

The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.

View Integration

Kafka and InfluxDB Integration

This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.

View Integration

Kinesis and InfluxDB Integration

The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.

View Integration