ntpq and MongoDB Integration
Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.
5B+
Telegraf downloads
#1
Time series database
Source: DB Engines
1B+
Downloads of InfluxDB
2,800+
Contributors
Table of Contents
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Input and output integration overview
The ntpq plugin collects standard metrics related to the Network Time Protocol (NTP) by executing the ntpq command. It gathers essential information about the synchronization state of the local machine with remote NTP servers, providing valuable insights into timekeeping accuracy and network performance.
The MongoDB Telegraf Plugin enables users to send metrics to a MongoDB database, automatically managing time series collections.
Integration details
ntpq
The ntpq Telegraf plugin provides a way to gather metrics from the Network Time Protocol (NTP) by querying the NTP server using the ntpq
executable. This plugin collects a variety of metrics related to the synchronization status with remote NTP servers, including delay, jitter, offset, polling frequency, and reachability. These metrics are crucial for understanding the performance and reliability of time synchronization efforts in systems that rely on accurate timekeeping. NTP plays a vital role in networked environments, enabling synchronized clocks across devices which is essential for logging, coordination of activities, and security protocols. Through this plugin, users can monitor the effectiveness of their time synchronization processes, making it easier to identify issues related to network delays or misconfigurations, thus ensuring that systems remain in sync and operate efficiently.
MongoDB
This plugin sends metrics to MongoDB and seamlessly integrates with its time series functionality, allowing for automatic creation of collections as time series when they don’t already exist. It requires MongoDB version 5.0 or higher to utilize the time series collections feature, which is vital for efficiently storing and querying time-based data. This plugin enhances the monitoring capabilities by ensuring that all relevant metrics are stored and organized correctly within MongoDB, providing users the ability to leverage MongoDB’s powerful querying and aggregation features for time series analysis.
Configuration
ntpq
[[inputs.ntpq]]
## Servers to query with ntpq.
## If no server is given, the local machine is queried.
# servers = []
## If false, set the -n ntpq flag. Can reduce metric gather time.
## DEPRECATED since 1.24.0: add '-n' to 'options' instead to skip DNS lookup
# dns_lookup = true
## Options to pass to the ntpq command.
# options = "-p"
## Output format for the 'reach' field.
## Available values are
## octal -- output as is in octal representation e.g. 377 (default)
## decimal -- convert value to decimal representation e.g. 371 -> 249
## count -- count the number of bits in the value. This represents
## the number of successful reaches, e.g. 37 -> 5
## ratio -- output the ratio of successful attempts e.g. 37 -> 5/8 = 0.625
# reach_format = "octal"
MongoDB
[[outputs.mongodb]]
# connection string examples for mongodb
dsn = "mongodb://localhost:27017"
# dsn = "mongodb://mongod1:27017,mongod2:27017,mongod3:27017/admin&replicaSet=myReplSet&w=1"
# overrides serverSelectionTimeoutMS in dsn if set
# timeout = "30s"
# default authentication, optional
# authentication = "NONE"
# for SCRAM-SHA-256 authentication
# authentication = "SCRAM"
# username = "root"
# password = "***"
# for x509 certificate authentication
# authentication = "X509"
# tls_ca = "ca.pem"
# tls_key = "client.pem"
# # tls_key_pwd = "changeme" # required for encrypted tls_key
# insecure_skip_verify = false
# database to store measurements and time series collections
# database = "telegraf"
# granularity can be seconds, minutes, or hours.
# configuring this value will be based on your input collection frequency.
# see https://docs.mongodb.com/manual/core/timeseries-collections/#create-a-time-series-collection
# granularity = "seconds"
# optionally set a TTL to automatically expire documents from the measurement collections.
# ttl = "360h"
Input and output integration examples
ntpq
-
Network Time Monitoring Dashboard: Utilize the ntpq plugin to create a centralized monitoring dashboard for tracking the reliability and performance of network time synchronization across multiple servers. By visualizing metrics such as delay and jitter, system administrators can quickly identify which servers are providing accurate time versus those with significant latency issues, ensuring that all systems remain synchronized effectively.
-
Automated Alert System for Time Drift: Implement an automated alert system that leverages ntpq metrics to notify operations teams when time drift exceeds acceptable thresholds. By analyzing the offset and jitter values, the system can trigger alerts if any remote NTP server is out of sync, allowing for swift remediation actions to maintain time accuracy across critical infrastructure.
-
Comparative Analysis of Time Sources: Use the ntpq plugin to perform a comparative analysis of different NTP servers over time. By querying multiple NTP sources and monitoring their metrics, organizations can evaluate the performance and reliability of their time sources, making informed decisions about which NTP servers to configure as primary or secondary in their environments.
-
Historical Performance Tracking for NTP: Gather historical performance data on various NTP servers using the ntpq plugin, enabling long-term trend analysis for timekeeping accuracy. This can help organizations identify patterns or recurring issues related to specific servers, informing future decisions about infrastructure changes or adjustments related to time synchronization strategies.
MongoDB
-
Dynamic Logging to MongoDB for IoT Devices: Utilize this plugin to collect and store metrics from a fleet of IoT devices in real-time. By sending device logs directly to MongoDB, you can create a centralized database that allows for easy access and querying of health metrics and performance data, enabling proactive maintenance and troubleshooting based on historical trends.
-
Time Series Analysis of Web Traffic: Use the MongoDB Telegraf Plugin to gather and analyze web traffic metrics over time. This application can help you understand peak usage times, user interactions, and behavior patterns, which can guide marketing strategies and infrastructure scaling decisions for improved user experience.
-
Automated Monitoring and Alerting System: Integrate the MongoDB plugin into an automated monitoring system that tracks application performance metrics. With time series collections, you can set up alerts based on specific thresholds, allowing your team to respond to potential issues before they affect users. This proactive management can enhance service reliability and overall performance.
-
Data Retention and TTL Management in Metrics Storage: Leverage the TTL feature for documents within MongoDB collections to auto-expire outdated metrics. This is particularly useful for environments where only recent performance data is relevant, preventing your MongoDB database from becoming cluttered with old metrics and ensuring efficient data management.
Feedback
Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Related Integrations
Related Integrations
HTTP and InfluxDB Integration
The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.
View IntegrationKafka and InfluxDB Integration
This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.
View IntegrationKinesis and InfluxDB Integration
The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.
View Integration