Nvidia SMI and Clarify Integration
Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.
5B+
Telegraf downloads
#1
Time series database
Source: DB Engines
1B+
Downloads of InfluxDB
2,800+
Contributors
Table of Contents
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Input and output integration overview
The Nvidia SMI Plugin enables the retrieval of detailed statistics about NVIDIA GPUs attached to the host system, providing essential insights for performance monitoring.
The Clarify plugin allows users to publish Telegraf metrics directly to Clarify, enabling enhanced analysis and monitoring capabilities.
Integration details
Nvidia SMI
The Nvidia SMI Plugin is designed to gather metrics regarding the performance and status of NVIDIA GPUs on the host machine. By leveraging the capabilities of the nvidia-smi
command-line tool, this plugin pulls crucial information such as GPU memory utilization, temperature, fan speed, and various performance metrics. This data is essential for monitoring GPU health and performance in real-time, particularly in environments where GPU performance directly impacts computing tasks, such as machine learning, 3D rendering, and high-performance computing. The plugin provides flexibility by allowing users to specify the path to the nvidia-smi
binary and configure polling timeouts, accommodating both Linux and Windows systems where the nvidia-smi
tool is commonly located. With its ability to collect detailed statistics on each GPU, this plugin becomes a vital resource for any infrastructure relying on NVIDIA hardware, facilitating proactive management and performance tuning.
Clarify
This plugin facilitates the writing of Telegraf metrics to Clarify, a platform for managing and analyzing time series data. By transforming metrics into Clarify signals, this output plugin enables seamless integration of collected telemetry data into the Clarify ecosystem. Users must obtain valid credentials, either through a credentials file or basic authentication, to configure the plugin. The configuration also provides options for fine-tuning how metrics are mapped to signals in Clarify, including the ability to specify unique identifiers using tags. Given that Clarify supports only floating point values, the plugin ensures that any unsupported types are effectively filtered out during the publishing process. This comprehensive connectivity aligns with use cases in monitoring, data analysis, and operational insights.
Configuration
Nvidia SMI
[[inputs.nvidia_smi]]
## Optional: path to nvidia-smi binary, defaults "/usr/bin/nvidia-smi"
## We will first try to locate the nvidia-smi binary with the explicitly specified value (or default value),
## if it is not found, we will try to locate it on PATH(exec.LookPath), if it is still not found, an error will be returned
# bin_path = "/usr/bin/nvidia-smi"
## Optional: timeout for GPU polling
# timeout = "5s"
Clarify
[[outputs.clarify]]
## Credentials File (Oauth 2.0 from Clarify integration)
credentials_file = "/path/to/clarify/credentials.json"
## Clarify username password (Basic Auth from Clarify integration)
username = "i-am-bob"
password = "secret-password"
## Timeout for Clarify operations
# timeout = "20s"
## Optional tags to be included when generating the unique ID for a signal in Clarify
# id_tags = []
# clarify_id_tag = 'clarify_input_id'
Input and output integration examples
Nvidia SMI
-
Real-Time GPU Monitoring for ML Training: Continuously monitor the GPU utilization and memory usage during machine learning model training. This enables data scientists to ensure that their GPUs are not being overutilized or underutilized, optimizing resource allocation and reviewing performance bottlenecks in real-time.
-
Automated Alerts for Overheating GPUs: Implement a system using the Nvidia SMI plugin to track GPU temperatures and set alerts for instances where temperatures exceed safe thresholds. This proactive monitoring can prevent hardware damage and improve system reliability by alerting administrators to potential cooling issues before they result in failure.
-
Performance Baselines for GPU Resources: Establish baseline performance metrics for your GPU resources. By regularly collecting data and analyzing trends in GPU usage, organizations can identify anomalies and optimize their workloads accordingly, leading to enhanced operational efficiency.
-
Dockerized GPU Usage Insights: In a containerized environment, use the plugin to monitor GPU performance from within a Docker container. This allows developers to track GPU performance of their applications in production, facilitating troubleshooting and performance optimization within isolated environments.
Clarify
-
Automated Data Monitoring: By integrating the Clarify plugin with sensor data collection, organizations can automate the monitoring of environmental conditions, such as temperature and humidity. The plugin processes metrics in real-time, sending updates to Clarify where they can be analyzed for trends, alerts, and historical tracking. This use case makes it easier to maintain optimal conditions in data centers or production environments, reducing the risk of equipment failures.
-
Performance Metrics Analysis: Companies can leverage this plugin to send application performance metrics to Clarify. By transmitting key indicators such as response times and error rates, developers and operations teams can utilize Clarify’s capabilities to visualize and analyze application performance over time. This insight can drive improvements in user experience and help identify areas in need of optimization.
-
Sensor Data Aggregation: Utilizing the plugin to push data from multiple sensors to Clarify allows for a comprehensive view of physical environments. This aggregation is particularly beneficial in sectors such as agriculture, where metrics from various sensors can be correlated to decision-making about resource allocations, pest control, and crop management. The plugin ensures the data is accurately mapped and transformed for effective analysis.
-
Real-Time Alerts and Notifications: Implement the Clarify plugin to trigger real-time alerts based on predefined thresholds within the metrics being sent. For instance, if temperature readings exceed certain levels, alerts can be generated and sent to operational staff. This proactive approach allows for immediate responses to potential issues, enhancing operational reliability and safety.
Feedback
Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Related Integrations
Related Integrations
HTTP and InfluxDB Integration
The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.
View IntegrationKafka and InfluxDB Integration
This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.
View IntegrationKinesis and InfluxDB Integration
The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.
View Integration