OPC UA and SigNoz Integration

Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.

info

This is not the recommended configuration for real-time query at scale. For query and compression optimization, high-speed ingest, and high availability, you may want to consider OPC UA and InfluxDB.

5B+

Telegraf downloads

#1

Time series database
Source: DB Engines

1B+

Downloads of InfluxDB

2,800+

Contributors

Table of Contents

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Input and output integration overview

The OPC UA plugin provides an interface for retrieving data from OPC UA server devices, facilitating effective data collection and monitoring.

This configuration turns any Telegraf agent into a Remote Write publisher for SigNoz, streaming rich metrics straight into the SigNoz backend with a single URL change.

Integration details

OPC UA

The OPC UA Plugin retrieves data from devices that communicate using the OPC UA protocol, allowing you to collect and monitor data from your OPC UA servers.

SigNoz

SigNoz is an open source observability platform that stores metrics, traces, and logs. When you deploy SigNoz, its signoz-otel-collector-metrics service exposes a Prometheus Remote Write receiver (default :13133/api/v1/write). By configuring Telegraf’s Prometheus plugin to point at this endpoint, you can push any Telegraf collected metrics, SNMP counters, cloud services, or business KPIs—directly into SigNoz. The plugin natively serializes metrics in the Remote Write protobuf format, supports external labels, metadata export, retries, and TLS or bearer-token auth, so it fits zero-trust and multi-tenant SigNoz clusters. Inside SigNoz, the data lands in ClickHouse tables that back Metrics Explorer, alert rules, and unified dashboards. This approach lets organizations unify Prometheus and OTLP pipelines, enables long-term retention powered by ClickHouse compression, and avoids vendor lock-in while retaining PromQL-style queries.

Configuration

OPC UA


[[inputs.opcua]]
  ## Metric name
  # name = "opcua"
  #
  ## OPC UA Endpoint URL
  # endpoint = "opc.tcp://localhost:4840"
  #
  ## Maximum time allowed to establish a connect to the endpoint.
  # connect_timeout = "10s"
  #
  ## Maximum time allowed for a request over the established connection.
  # request_timeout = "5s"

  # Maximum time that a session shall remain open without activity.
  # session_timeout = "20m"
  #
  ## Security policy, one of "None", "Basic128Rsa15", "Basic256",
  ## "Basic256Sha256", or "auto"
  # security_policy = "auto"
  #
  ## Security mode, one of "None", "Sign", "SignAndEncrypt", or "auto"
  # security_mode = "auto"
  #
  ## Path to cert.pem. Required when security mode or policy isn't "None".
  ## If cert path is not supplied, self-signed cert and key will be generated.
  # certificate = "/etc/telegraf/cert.pem"
  #
  ## Path to private key.pem. Required when security mode or policy isn't "None".
  ## If key path is not supplied, self-signed cert and key will be generated.
  # private_key = "/etc/telegraf/key.pem"
  #
  ## Authentication Method, one of "Certificate", "UserName", or "Anonymous".  To
  ## authenticate using a specific ID, select 'Certificate' or 'UserName'
  # auth_method = "Anonymous"
  #
  ## Username. Required for auth_method = "UserName"
  # username = ""
  #
  ## Password. Required for auth_method = "UserName"
  # password = ""
  #
  ## Option to select the metric timestamp to use. Valid options are:
  ##     "gather" -- uses the time of receiving the data in telegraf
  ##     "server" -- uses the timestamp provided by the server
  ##     "source" -- uses the timestamp provided by the source
  # timestamp = "gather"
  #
  ## Client trace messages
  ## When set to true, and debug mode enabled in the agent settings, the OPCUA
  ## client's messages are included in telegraf logs. These messages are very
  ## noisey, but essential for debugging issues.
  # client_trace = false
  #
  ## Include additional Fields in each metric
  ## Available options are:
  ##   DataType -- OPC-UA Data Type (string)
  # optional_fields = []
  #
  ## Node ID configuration
  ## name              - field name to use in the output
  ## namespace         - OPC UA namespace of the node (integer value 0 thru 3)
  ## identifier_type   - OPC UA ID type (s=string, i=numeric, g=guid, b=opaque)
  ## identifier        - OPC UA ID (tag as shown in opcua browser)
  ## tags              - extra tags to be added to the output metric (optional); deprecated in 1.25.0; use default_tags
  ## default_tags      - extra tags to be added to the output metric (optional)
  ##
  ## Use either the inline notation or the bracketed notation, not both.
  #
  ## Inline notation (default_tags not supported yet)
  # nodes = [
  #   {name="", namespace="", identifier_type="", identifier="", tags=[["tag1", "value1"], ["tag2", "value2"]},
  #   {name="", namespace="", identifier_type="", identifier=""},
  # ]
  #
  ## Bracketed notation
  # [[inputs.opcua.nodes]]
  #   name = "node1"
  #   namespace = ""
  #   identifier_type = ""
  #   identifier = ""
  #   default_tags = { tag1 = "value1", tag2 = "value2" }
  #
  # [[inputs.opcua.nodes]]
  #   name = "node2"
  #   namespace = ""
  #   identifier_type = ""
  #   identifier = ""
  #
  ## Node Group
  ## Sets defaults so they aren't required in every node.
  ## Default values can be set for:
  ## * Metric name
  ## * OPC UA namespace
  ## * Identifier
  ## * Default tags
  ##
  ## Multiple node groups are allowed
  #[[inputs.opcua.group]]
  ## Group Metric name. Overrides the top level name.  If unset, the
  ## top level name is used.
  # name =
  #
  ## Group default namespace. If a node in the group doesn't set its
  ## namespace, this is used.
  # namespace =
  #
  ## Group default identifier type. If a node in the group doesn't set its
  ## namespace, this is used.
  # identifier_type =
  #
  ## Default tags that are applied to every node in this group. Can be
  ## overwritten in a node by setting a different value for the tag name.
  ##   example: default_tags = { tag1 = "value1" }
  # default_tags = {}
  #
  ## Node ID Configuration.  Array of nodes with the same settings as above.
  ## Use either the inline notation or the bracketed notation, not both.
  #
  ## Inline notation (default_tags not supported yet)
  # nodes = [
  #  {name="node1", namespace="", identifier_type="", identifier=""},
  #  {name="node2", namespace="", identifier_type="", identifier=""},
  #]
  #
  ## Bracketed notation
  # [[inputs.opcua.group.nodes]]
  #   name = "node1"
  #   namespace = ""
  #   identifier_type = ""
  #   identifier = ""
  #   default_tags = { tag1 = "override1", tag2 = "value2" }
  #
  # [[inputs.opcua.group.nodes]]
  #   name = "node2"
  #   namespace = ""
  #   identifier_type = ""
  #   identifier = ""

  ## Enable workarounds required by some devices to work correctly
  # [inputs.opcua.workarounds]
    ## Set additional valid status codes, StatusOK (0x0) is always considered valid
  # additional_valid_status_codes = ["0xC0"]

  # [inputs.opcua.request_workarounds]
    ## Use unregistered reads instead of registered reads
  # use_unregistered_reads = false

SigNoz

[[outputs.prometheusremotewrite]]
  ## SigNoz OTEL-Collector metrics endpoint (Prometheus Remote Write receiver)
  ## Default port is 13133 when you install SigNoz with the Helm chart
  url = "http://signoz-otel-collector-metrics.monitoring.svc.cluster.local:13133/api/v1/write"

  ## Add identifying labels so you can slice & dice the data later
  external_labels = { host = "${HOSTNAME}", agent = "telegraf" }

  ## Forward host metadata for richer dashboards (SigNoz maps these to ClickHouse columns)
  send_metadata = true

  ## ----- Authentication (comment out what you don’t need) -----
  # bearer_token   = "$SIGNOZ_TOKEN"          # SaaS tenant token
  # basic_username = "signoz"                 # Basic auth (self-hosted)
  # basic_password = "secret"

  ## ----- TLS options (for SaaS or HTTPS self-hosted) -----
  # tls_ca                  = "/etc/ssl/certs/ca.crt"
  # tls_cert                = "/etc/telegraf/certs/telegraf.crt"
  # tls_key                 = "/etc/telegraf/certs/telegraf.key"
  # insecure_skip_verify    = false

  ## ----- Performance tuning -----
  max_batch_size = 10000      # samples per POST
  timeout        = "10s"
  retry_max      = 3

Input and output integration examples

OPC UA

  1. Basic Configuration: Set up the plugin with your OPC UA server endpoint and desired metrics. This allows Telegraf to start gathering metrics from the configured nodes.

  2. Node ID Setup: Use the configuration to specify specific nodes, such as temperature sensors, to monitor their values in real-time. For example, configure node ns=3;s=Temperature to gather temperature data directly.

  3. Group Configuration: Simplify monitoring multiple nodes by grouping them under a single configuration—this sets defaults for all nodes in that group, thereby reducing redundancy in setup.

SigNoz

  1. Multi-Cluster Federated Monitoring: Drop a Telegraf DaemonSet into each Kubernetes cluster, tag metrics with cluster=<name>, and Remote Write them to a central SigNoz instance. Ops teams get a single PromQL window across prod, staging, and edge clusters without running Thanos sidecars.

  2. Factory-Floor Edge Gateway: A rugged Intel NUC on the shop floor runs Telegraf to scrape Modbus PLCs and environmental sensors. It batches readings every 5 seconds and pushes them over an intermittent 4G link to SigNoz SaaS. ClickHouse compression keeps costs low while AI-based outlier detection in SigNoz flags overheating motors before failure.

  3. SaaS Usage Metering: Telegraf runs alongside each micro-service, exporting per-tenant counters (api_calls, gigabytes_processed). Remote Write streams the data to SigNoz where a scheduled ClickHouse materialized view aggregates usage for monthly billing—no separate metering stack required.

  4. Autoscaling Feedback Loop: Combine Telegraf’s Kubernetes input with the Remote Write output to publish granular pod CPU and queue-length metrics into SigNoz. A custom SigNoz alert fires when P95 latency breaches 200 ms and a GitOps controller reads that alert to trigger a HorizontalPodAutoscaler tweak—closing the loop between observability and automation.

Feedback

Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Related Integrations

HTTP and InfluxDB Integration

The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.

View Integration

Kafka and InfluxDB Integration

This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.

View Integration

Kinesis and InfluxDB Integration

The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.

View Integration