OpenStack and CrateDB Integration

Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.

info

This is not the recommended configuration for real-time query at scale. For query and compression optimization, high-speed ingest, and high availability, you may want to consider OpenStack and InfluxDB.

5B+

Telegraf downloads

#1

Time series database
Source: DB Engines

1B+

Downloads of InfluxDB

2,800+

Contributors

Table of Contents

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Input and output integration overview

This plugin collects metrics from essential OpenStack services, facilitating the monitoring and management of cloud infrastructures.

The CrateDB plugin facilitates the writing of metrics to a CrateDB database, leveraging its PostgreSQL-compatible protocol to ensure a seamless experience for users.

Integration details

OpenStack

The OpenStack plugin allows users to collect performance metrics from various OpenStack services such as CINDER, GLANCE, HEAT, KEYSTONE, NEUTRON, and NOVA. It supports multiple OpenStack APIs to fetch critical metrics related to these services, enabling comprehensive monitoring and management of cloud resources. As organizations increasingly adopt OpenStack for their cloud infrastructure, this plugin plays a vital role in providing insights into resource usage, availability, and performance across the cloud environment. Configuration options allow for customized polling intervals and filtering unwanted tags to optimize performance and cardinals.

CrateDB

This plugin writes to CrateDB via its PostgreSQL protocol, allowing for metrics to be efficiently stored in a scalable database. CrateDB is designed for high-speed analytics, supporting time-series data and complicated queries, making it ideal for applications that require fast ingestion and analysis of large datasets. By utilizing the PostgreSQL protocol, the CrateDB output plugin ensures compatibility with existing PostgreSQL client libraries and tools, enabling a smooth integration for users who are already familiar with PostgreSQL’s ecosystem. The plugin provides options such as automatic table creation, connection parameters, and query timeouts, offering flexibility in how metrics are handled and stored within the database.

Configuration

OpenStack

[[inputs.openstack]]
  ## The recommended interval to poll is '30m'

  ## The identity endpoint to authenticate against and get the service catalog from.
  authentication_endpoint = "https://my.openstack.cloud:5000"

  ## The domain to authenticate against when using a V3 identity endpoint.
  # domain = "default"

  ## The project to authenticate as.
  # project = "admin"

  ## User authentication credentials. Must have admin rights.
  username = "admin"
  password = "password"

  ## Available services are:
  ## "agents", "aggregates", "cinder_services", "flavors", "hypervisors",
  ## "networks", "nova_services", "ports", "projects", "servers",
  ## "serverdiagnostics", "services", "stacks", "storage_pools", "subnets",
  ## "volumes"
  # enabled_services = ["services", "projects", "hypervisors", "flavors", "networks", "volumes"]

  ## Query all instances of all tenants for the volumes and server services
  ## NOTE: Usually this is only permitted for administrators!
  # query_all_tenants = true

  ## output secrets (such as adminPass(for server) and UserID(for volume)).
  # output_secrets = false

  ## Amount of time allowed to complete the HTTP(s) request.
  # timeout = "5s"

  ## HTTP Proxy support
  # http_proxy_url = ""

  ## Optional TLS Config
  # tls_ca = /path/to/cafile
  # tls_cert = /path/to/certfile
  # tls_key = /path/to/keyfile
  ## Use TLS but skip chain & host verification
  # insecure_skip_verify = false

  ## Options for tags received from Openstack
  # tag_prefix = "openstack_tag_"
  # tag_value = "true"

  ## Timestamp format for timestamp data received from Openstack.
  ## If false format is unix nanoseconds.
  # human_readable_timestamps = false

  ## Measure Openstack call duration
  # measure_openstack_requests = false

CrateDB

[[outputs.cratedb]]
  ## Connection parameters for accessing the database see
  ##   https://pkg.go.dev/github.com/jackc/pgx/v4#ParseConfig
  ## for available options
  url = "postgres://user:password@localhost/schema?sslmode=disable"

  ## Timeout for all CrateDB queries.
  # timeout = "5s"

  ## Name of the table to store metrics in.
  # table = "metrics"

  ## If true, and the metrics table does not exist, create it automatically.
  # table_create = false

  ## The character(s) to replace any '.' in an object key with
  # key_separator = "_"

Input and output integration examples

OpenStack

  1. Cross-Cloud Management: Leverage the OpenStack plugin to monitor and manage multiple OpenStack clouds from a single Telegraf instance. By aggregating metrics across different clouds, organizations can gain insights into resource utilization and optimize their cloud architecture for cost and performance.

  2. Automated Scaling Based on Metrics: Integrate the metrics gathered from OpenStack into an automated scaling solution. For example, if the plugin detects that a specific service’s performance is degraded, it can trigger auto-scaling rules to launch additional instances, ensuring that system performance remains optimal under varying workloads.

  3. Performance Monitoring Dashboard: Use data collected by the OpenStack Telegraf plugin to power real-time monitoring dashboards. This setup provides visualizations of key metrics from OpenStack services, enabling stakeholders to quickly identify trends, pinpoint issues, and make data-driven decisions in managing their cloud infrastructure.

  4. Reporting and Analysis of Service Availability: By utilizing the metrics collected from various OpenStack services, teams can generate detailed reports on service availability and performance over time. This information can help identify recurring issues, improve service delivery, and make informed decisions regarding changes in infrastructure or service configuration.

CrateDB

  1. Real-Time Analytics for IoT Devices: Collect and store metrics from thousands of IoT devices. By setting up a dynamic metrics table for each device, users can perform real-time analytics on the collected data, enabling quick insights into device performance, patterns, and potential failures. This setup benefits from CrateDB’s ability to handle high-throughput data ingestion while providing the necessary analytics capabilities to derive actionable insights.

  2. Website Performance Monitoring: Track key performance metrics from web applications, such as request latency and user activity. By storing metrics in CrateDB, teams can leverage the power of SQL-like queries to analyze traffic patterns, user engagement, and server performance over time, leading to optimized application performance and enhanced user experiences.

  3. Financial Transaction Analysis: Manage large volumes of financial transaction data for real-time fraud detection and analysis. With CrateDB’s scalable infrastructure, users can store, query, and analyze transaction metrics efficiently, allowing for the detection of anomalies and illicit activities based on transaction patterns and trends.

Feedback

Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Related Integrations

HTTP and InfluxDB Integration

The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.

View Integration

Kafka and InfluxDB Integration

This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.

View Integration

Kinesis and InfluxDB Integration

The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.

View Integration