OpenTelemetry and GroundWork Integration

Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.

info

This is not the recommended configuration for real-time query at scale. For query and compression optimization, high-speed ingest, and high availability, you may want to consider OpenTelemetry and InfluxDB.

5B+

Telegraf downloads

#1

Time series database
Source: DB Engines

1B+

Downloads of InfluxDB

2,800+

Contributors

Table of Contents

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Input and output integration overview

This plugin receives traces, metrics, and logs from OpenTelemetry clients and agents via gRPC, enabling comprehensive observability of applications.

This plugin writes to a GroundWork Monitor instance, allowing for effective metrics management and monitoring in a centralized manner.

Integration details

OpenTelemetry

The OpenTelemetry plugin is designed to receive telemetry data such as traces, metrics, and logs from clients and agents implementing OpenTelemetry via gRPC. This plugin initiates a gRPC service that listens for incoming telemetry data, making it distinct from standard plugins that collect metrics at defined intervals. The OpenTelemetry ecosystem aids developers in observing and understanding their applications’ performance by providing a vendor-neutral way to instrument, generate, collect, and export telemetry data. Key features of this plugin include customizable connection timeouts, adjustable maximum message sizes for incoming data, and options for specifying span, log, and profile dimensions to tag the incoming metrics. With this flexibility, organizations can tailor their telemetry collection to meet precise observability requirements and ensure seamless data integration into systems like InfluxDB.

GroundWork

The GroundWork plugin enables Telegraf to send metrics to a GroundWork Monitor instance, specifically supporting GW8 and newer versions. This integration allows users to leverage the robust monitoring capabilities of GroundWork, enabling comprehensive oversight of metrics collected from diverse sources. Users can specify various parameters such as the GroundWork instance URL, agent IDs, and authentication credentials, allowing for a tailored fit within their existing monitoring setups. It also supports secret-store secrets to enhance security for sensitive fields like username and password. Tags used within the plugin provide fine-grained control over how metrics are categorized and displayed within the GroundWork interface, allowing for custom configurations that adapt to different monitoring needs. However, users should be aware that string metrics are currently not supported by GroundWork, impacting how they manage their data.

Configuration

OpenTelemetry

[[inputs.opentelemetry]]
  ## Override the default (0.0.0.0:4317) destination OpenTelemetry gRPC service
  ## address:port
  # service_address = "0.0.0.0:4317"

  ## Override the default (5s) new connection timeout
  # timeout = "5s"

  ## gRPC Maximum Message Size
  # max_msg_size = "4MB"

  ## Override the default span attributes to be used as line protocol tags.
  ## These are always included as tags:
  ## - trace ID
  ## - span ID
  ## Common attributes can be found here:
  ## - https://github.com/open-telemetry/opentelemetry-collector/tree/main/semconv
  # span_dimensions = ["service.name", "span.name"]

  ## Override the default log record attributes to be used as line protocol tags.
  ## These are always included as tags, if available:
  ## - trace ID
  ## - span ID
  ## Common attributes can be found here:
  ## - https://github.com/open-telemetry/opentelemetry-collector/tree/main/semconv
  ## When using InfluxDB for both logs and traces, be certain that log_record_dimensions
  ## matches the span_dimensions value.
  # log_record_dimensions = ["service.name"]

  ## Override the default profile attributes to be used as line protocol tags.
  ## These are always included as tags, if available:
  ## - profile_id
  ## - address
  ## - sample
  ## - sample_name
  ## - sample_unit
  ## - sample_type
  ## - sample_type_unit
  ## Common attributes can be found here:
  ## - https://github.com/open-telemetry/opentelemetry-collector/tree/main/semconv
  # profile_dimensions = []

  ## Override the default (prometheus-v1) metrics schema.
  ## Supports: "prometheus-v1", "prometheus-v2"
  ## For more information about the alternatives, read the Prometheus input
  ## plugin notes.
  # metrics_schema = "prometheus-v1"

  ## Optional TLS Config.
  ## For advanced options: https://github.com/influxdata/telegraf/blob/v1.18.3/docs/TLS.md
  ##
  ## Set one or more allowed client CA certificate file names to
  ## enable mutually authenticated TLS connections.
  # tls_allowed_cacerts = ["/etc/telegraf/clientca.pem"]
  ## Add service certificate and key.
  # tls_cert = "/etc/telegraf/cert.pem"
  # tls_key = "/etc/telegraf/key.pem"

GroundWork

[[outputs.groundwork]]
  ## URL of your groundwork instance.
  url = "https://groundwork.example.com"

  ## Agent uuid for GroundWork API Server.
  agent_id = ""

  ## Username and password to access GroundWork API.
  username = ""
  password = ""

  ## Default application type to use in GroundWork client
  # default_app_type = "TELEGRAF"

  ## Default display name for the host with services(metrics).
  # default_host = "telegraf"

  ## Default service state.
  # default_service_state = "SERVICE_OK"

  ## The name of the tag that contains the hostname.
  # resource_tag = "host"

  ## The name of the tag that contains the host group name.
  # group_tag = "group"

Input and output integration examples

OpenTelemetry

  1. Unified Monitoring Across Services: Use the OpenTelemetry plugin to collect and consolidate telemetry data from various microservices within a Kubernetes environment. By instrumenting each service with OpenTelemetry, you can utilize this plugin to gather a holistic view of application performance and dependencies in real-time, enabling faster troubleshooting and improved reliability of complex systems.

  2. Enhanced Debugging with Traces: Implement this plugin to capture end-to-end traces of requests flowing through multiple services. For instance, when a user initiates a transaction that triggers several backend services, the OpenTelemetry plugin can record detailed traces that highlight performance bottlenecks, giving developers the necessary insights to debug issues and optimize their code.

  3. Dynamic Load Testing and Performance Monitoring: Leverage the capabilities of this plugin during load testing phases by collecting live metrics and traces under simulated higher loads. This approach helps to evaluate the resilience of the application components and identify potential performance degradations preemptively, ensuring a smooth user experience in production.

  4. Integrated Logging and Metrics for Real-Time Monitoring: Combine the OpenTelemetry plugin with logging frameworks to gather real-time logs alongside metric data, creating a powerful observability platform. For example, integrate it within a CI/CD pipeline to monitor builds and deployments, while collecting logs that help diagnose failures or performance issues in real-time.

GroundWork

  1. Centralized Monitoring Dashboard: Use the GroundWork plugin to aggregate metrics from multiple Telegraf instances into a single GroundWork Monitor dashboard. This configuration offers complete visibility into system health across various components, enabling swift identification of performance bottlenecks and improved incident response times.

  2. Service Health Monitoring with Alerts: Configure this plugin to send critical service metrics to GroundWork, establishing a robust alerting system. Metrics such as CPU usage and service statuses can trigger alerts based on threshold values, informing administrators of potential issues before they escalate, thereby enhancing system reliability.

  3. Historical Data Analysis: Leverage the historical metric capabilities of GroundWork using this plugin to conduct trend analysis over time. This application allows organizations to make data-driven decisions based on comprehensive historical performance metrics, which can assist in capacity planning and optimize resource allocation.

  4. Custom Service Tags for Enhanced Monitoring: Extend the functionality of this plugin by utilizing custom tags for different services and hosts. By customizing these tags, users can filter and categorize metrics more effectively within their monitoring framework, leading to tailored monitoring experiences that align specifically with business objectives.

Feedback

Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Related Integrations

HTTP and InfluxDB Integration

The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.

View Integration

Kafka and InfluxDB Integration

This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.

View Integration

Kinesis and InfluxDB Integration

The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.

View Integration