Phillips Hue Bridge and Databricks Integration

Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.

info

This is not the recommended configuration for real-time query at scale. For query and compression optimization, high-speed ingest, and high availability, you may want to consider Phillips Hue Bridge and InfluxDB.

5B+

Telegraf downloads

#1

Time series database
Source: DB Engines

1B+

Downloads of InfluxDB

2,800+

Contributors

Table of Contents

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Input and output integration overview

This plugin gathers status from Hue Bridge devices using the CLIP API interface.

Use Telegraf’s HTTP output plugin to push metrics straight into a Databricks Lakehouse by calling the SQL Statement Execution API with a JSON-wrapped INSERT or volume PUT command.

Integration details

Phillips Hue Bridge

The Hue Bridge plugin allows users to gather real-time status from Philips Hue Bridge devices utilizing the CLIP API interface. By communicating with Hue Bridges, this plugin is capable of retrieving various metrics related to home lighting and environmental conditions. It offers multiple schemes for accessing the bridges, such as local LAN, cloud, and mDNS, ensuring flexibility in deployment scenarios. The plugin can handle diverse configurations such as room assignments for devices, which optimizes the evaluation of statuses, especially in environments with many devices. Furthermore, it provides various monitoring metrics applicable to lights, temperature sensors, motion sensors, and device power status, thereby enabling comprehensive insights into a smart home setup. The configuration options allow users to tailor their connections to optimize performance and security, including optional TLS configurations for secure communication.

Databricks

This configuration turns Telegraf into a lightweight ingestion agent for the Databricks Lakehouse. It leverages the Databricks SQL Statement Execution API 2.0, which accepts authenticated POST requests containing a JSON payload with a statement field. Each Telegraf flush dynamically renders a SQL INSERT (or, for file-based workflows, a PUT ... INTO /Volumes/... command) that lands the metrics into a Unity Catalog table or volume governed by Lakehouse security. Under the hood Databricks stores successful inserts as Delta Lake transactions, enabling ACID guarantees, time-travel, and scalable analytics. Operators can point the warehouse_id at any serverless or classic SQL warehouse, and all authentication is handled with a PAT or service-principal token—no agents or JDBC drivers required. Because Telegraf’s HTTP output supports custom headers, batching, TLS, and proxy settings, the same pattern scales from edge IoT gateways to container sidecars, consolidating infrastructure telemetry, application logs, or business KPIs directly into the Lakehouse for BI, ML, and Lakehouse Monitoring. Unity Catalog volumes provide a governed staging layer when file uploads and COPY INTO are preferred, and the approach aligns with Databricks’ recommended ingestion practices for partners and ISVs.

Configuration

Phillips Hue Bridge

[[inputs.huebridge]]
  ## URL of bridges to query in the form ://:@
/ ## See documentation for available schemes. bridges = [ "address://:@/" ] ## Manual device to room assignments to apply during status evaluation. ## E.g. for motion sensors which are reported without a room assignment. # room_assignments = { "Motion sensor 1" = "Living room", "Motion sensor 2" = "Corridor" } ## Timeout for gathering information # timeout = "10s" ## Optional TLS Config # tls_ca = "/etc/telegraf/ca.pem" # tls_cert = "/etc/telegraf/cert.pem" # tls_key = "/etc/telegraf/key.pem" # tls_key_pwd = "secret" ## Use TLS but skip chain & host verification # insecure_skip_verify = false </code></pre>

Databricks

[[outputs.http]]
  ## Databricks SQL Statement Execution API endpoint
  url = "https://{{ env "DATABRICKS_HOST" }}/api/2.0/sql/statements"

  ## Use POST to submit each Telegraf batch as a SQL request
  method = "POST"

  ## Personal-access token (PAT) for workspace or service principal
  headers = { Authorization = "Bearer {{ env "DATABRICKS_TOKEN" }}" }

  ## Send JSON that wraps the metrics batch in a SQL INSERT (or PUT into a Volume)
  content_type = "application/json"

  ## Serialize metrics as JSON so they can be embedded in the SQL statement
  data_format = "json"
  json_timestamp_units = "1ms"

  ## Build the request body.  Telegraf replaces the template variables at runtime.
  ## Example inserts a row per metric into a Unity-Catalog table.
  body_template = """
  {
    \"statement\": \"INSERT INTO ${TARGET_TABLE} VALUES {{range .Metrics}}(from_unixtime({{.timestamp}}/1000), {{.fields.usage}}, '{{.tags.host}}'){{end}}\",
    \"warehouse_id\": \"${WAREHOUSE_ID}\"
  }
  """

  ## Optional: add batching limits or TLS settings
  # batch_size = 500
  # timeout     = "10s"

Input and output integration examples

Phillips Hue Bridge

  1. Automated Lighting Control Based on Room Occupancy: Utilize the Hue Bridge plugin to monitor motion sensors within various rooms of a home. When motion is detected, the system can automatically trigger the lights to turn on, providing convenience and energy efficiency. This integration could significantly enhance user experience and preferences, adapting the lighting to occupancy levels without manual intervention.

  2. Environmental Monitoring in Smart Homes: Implement the Hue Bridge plugin to track temperature and light levels within the house. By continuously monitoring these metrics, users can create a comfortable indoor climate, adjusting heating and cooling systems based on temperature trends or activating lights based on light levels detected. This data-driven approach leads to smart home automation that responds to actual environmental conditions.

  3. Integration with Home Automation Systems: Leverage this plugin to integrate Philips Hue Bridge statistics into broader home automation frameworks. For example, collecting light and temperature data can feed into a centralized dashboard that provides homeowners with insights about their energy usage patterns. Environments can be programmed to respond proactively to user habits, promoting efficiency and energy conservation.

  4. Battery Monitoring for Smart Devices: Use the Hue Bridge plugin to monitor battery levels across various connected smart devices. By being alerted about low battery states, homeowners can take timely actions to replace or recharge devices, preventing outages and ensuring smooth operation of their smart home systems.

Databricks

  1. Edge-to-Lakehouse Telemetry Pipe: Deploy Telegraf on factory PLCs to sample vibration metrics and post them every second to a serverless SQL warehouse. Delta tables power PowerBI dashboards that alert engineers when thresholds drift.
  2. Blue-Green CI/CD Rollout Metrics: Attach a Telegraf sidecar to each Kubernetes canary pod; it inserts container stats into a Unity Catalog table tagged by deployment_id, letting Databricks SQL compare error-rate percentiles and auto-rollback underperforming versions.
  3. SaaS Usage Metering: Insert per-tenant API-call counters via the HTTP plugin; a nightly Lakehouse query aggregates usage into invoices, eliminating custom metering micro-services.
  4. Security Forensics Lake: Upload JSON batches of Suricata IDS events to a Unity Catalog volume using PUT commands, then run COPY INTO for near-real-time enrichment with Delta Live Tables, producing a searchable threat-intel lake that joins network logs with user session data.

Feedback

Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Related Integrations

HTTP and InfluxDB Integration

The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.

View Integration

Kafka and InfluxDB Integration

This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.

View Integration

Kinesis and InfluxDB Integration

The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.

View Integration