Phillips Hue Bridge and Microsoft SQL Server Integration
Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.
5B+
Telegraf downloads
#1
Time series database
Source: DB Engines
1B+
Downloads of InfluxDB
2,800+
Contributors
Table of Contents
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Input and output integration overview
This plugin gathers status from Hue Bridge devices using the CLIP API interface.
Telegraf’s SQL plugin facilitates the storage of metrics in SQL databases. When configured for Microsoft SQL Server, it supports the specific DSN format and schema requirements, allowing for seamless integration with SQL Server.
Integration details
Phillips Hue Bridge
The Hue Bridge plugin allows users to gather real-time status from Philips Hue Bridge devices utilizing the CLIP API interface. By communicating with Hue Bridges, this plugin is capable of retrieving various metrics related to home lighting and environmental conditions. It offers multiple schemes for accessing the bridges, such as local LAN, cloud, and mDNS, ensuring flexibility in deployment scenarios. The plugin can handle diverse configurations such as room assignments for devices, which optimizes the evaluation of statuses, especially in environments with many devices. Furthermore, it provides various monitoring metrics applicable to lights, temperature sensors, motion sensors, and device power status, thereby enabling comprehensive insights into a smart home setup. The configuration options allow users to tailor their connections to optimize performance and security, including optional TLS configurations for secure communication.
Microsoft SQL Server
Telegraf’s SQL output plugin for Microsoft SQL Server is designed to capture and store metric data by dynamically creating tables and columns that match the structure of incoming data. This integration leverages the go-mssqldb driver, which follows the SQL Server connection protocol through a DSN that includes server, port, and database details. Although the driver is considered experimental due to limited unit tests, it provides robust support for dynamic schema generation and data insertion, enabling detailed time-stamped records of system performance. This flexibility makes it a valuable tool for environments that demand reliable and granular metric logging, despite its experimental status.
Configuration
Phillips Hue Bridge
[[inputs.huebridge]]
## URL of bridges to query in the form ://:@/
## See documentation for available schemes.
bridges = [ "address://:@/" ]
## Manual device to room assignments to apply during status evaluation.
## E.g. for motion sensors which are reported without a room assignment.
# room_assignments = { "Motion sensor 1" = "Living room", "Motion sensor 2" = "Corridor" }
## Timeout for gathering information
# timeout = "10s"
## Optional TLS Config
# tls_ca = "/etc/telegraf/ca.pem"
# tls_cert = "/etc/telegraf/cert.pem"
# tls_key = "/etc/telegraf/key.pem"
# tls_key_pwd = "secret"
## Use TLS but skip chain & host verification
# insecure_skip_verify = false
</code></pre>
Microsoft SQL Server
[[outputs.sql]]
## Database driver
## Valid options: mssql (Microsoft SQL Server), mysql (MySQL), pgx (Postgres),
## sqlite (SQLite3), snowflake (snowflake.com), clickhouse (ClickHouse)
driver = "mssql"
## Data source name
## For Microsoft SQL Server, the DSN typically includes the server, port, username, password, and database name.
## Example DSN: "sqlserver://username:password@localhost:1433?database=telegraf"
data_source_name = "sqlserver://username:password@localhost:1433?database=telegraf"
## Timestamp column name
timestamp_column = "timestamp"
## Table creation template
## Available template variables:
## {TABLE} - table name as a quoted identifier
## {TABLELITERAL} - table name as a quoted string literal
## {COLUMNS} - column definitions (list of quoted identifiers and types)
table_template = "CREATE TABLE {TABLE} ({COLUMNS})"
## Table existence check template
## Available template variables:
## {TABLE} - table name as a quoted identifier
table_exists_template = "SELECT 1 FROM {TABLE} LIMIT 1"
## Initialization SQL (optional)
init_sql = ""
## Maximum amount of time a connection may be idle. "0s" means connections are never closed due to idle time.
connection_max_idle_time = "0s"
## Maximum amount of time a connection may be reused. "0s" means connections are never closed due to age.
connection_max_lifetime = "0s"
## Maximum number of connections in the idle connection pool. 0 means unlimited.
connection_max_idle = 2
## Maximum number of open connections to the database. 0 means unlimited.
connection_max_open = 0
## Metric type to SQL type conversion
## You can customize the mapping if needed.
#[outputs.sql.convert]
# integer = "INT"
# real = "DOUBLE"
# text = "TEXT"
# timestamp = "TIMESTAMP"
# defaultvalue = "TEXT"
# unsigned = "UNSIGNED"
# bool = "BOOL"
Input and output integration examples
Phillips Hue Bridge
-
Automated Lighting Control Based on Room Occupancy: Utilize the Hue Bridge plugin to monitor motion sensors within various rooms of a home. When motion is detected, the system can automatically trigger the lights to turn on, providing convenience and energy efficiency. This integration could significantly enhance user experience and preferences, adapting the lighting to occupancy levels without manual intervention.
-
Environmental Monitoring in Smart Homes: Implement the Hue Bridge plugin to track temperature and light levels within the house. By continuously monitoring these metrics, users can create a comfortable indoor climate, adjusting heating and cooling systems based on temperature trends or activating lights based on light levels detected. This data-driven approach leads to smart home automation that responds to actual environmental conditions.
-
Integration with Home Automation Systems: Leverage this plugin to integrate Philips Hue Bridge statistics into broader home automation frameworks. For example, collecting light and temperature data can feed into a centralized dashboard that provides homeowners with insights about their energy usage patterns. Environments can be programmed to respond proactively to user habits, promoting efficiency and energy conservation.
-
Battery Monitoring for Smart Devices: Use the Hue Bridge plugin to monitor battery levels across various connected smart devices. By being alerted about low battery states, homeowners can take timely actions to replace or recharge devices, preventing outages and ensuring smooth operation of their smart home systems.
Microsoft SQL Server
-
Enterprise Application Monitoring: Leverage the plugin to capture detailed performance metrics from enterprise applications running on SQL Server. This setup allows IT teams to analyze system performance, track transaction times, and identify bottlenecks across complex, multi-tier environments.
-
Dynamic Infrastructure Auditing: Deploy the plugin to create a dynamic audit log of infrastructure changes and performance metrics in SQL Server. This use case is ideal for organizations that require real-time monitoring and historical analysis of system performance for compliance and optimization.
-
Automated Performance Benchmarking: Use the plugin to continuously record and analyze performance metrics of SQL Server databases. This enables automated benchmarking, where historical data is compared against current performance, helping to quickly identify anomalies or degradation in service.
-
Integrated DevOps Dashboards: Integrate the plugin with DevOps monitoring tools to feed real-time metrics from SQL Server into centralized dashboards. This provides a holistic view of application health, allowing teams to correlate SQL Server performance with application-level events for faster troubleshooting and proactive maintenance.
Feedback
Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Related Integrations
Related Integrations
HTTP and InfluxDB Integration
The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.
View IntegrationKafka and InfluxDB Integration
This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.
View IntegrationKinesis and InfluxDB Integration
The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.
View Integration