Phillips Hue Bridge and MySQL Integration
Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.
5B+
Telegraf downloads
#1
Time series database
Source: DB Engines
1B+
Downloads of InfluxDB
2,800+
Contributors
Table of Contents
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Input and output integration overview
This plugin gathers status from Hue Bridge devices using the CLIP API interface.
The Telegraf SQL plugin allows you to store metrics from Telegraf directly into a MySQL database, making it easier to analyze and visualize the collected metrics.
Integration details
Phillips Hue Bridge
The Hue Bridge plugin allows users to gather real-time status from Philips Hue Bridge devices utilizing the CLIP API interface. By communicating with Hue Bridges, this plugin is capable of retrieving various metrics related to home lighting and environmental conditions. It offers multiple schemes for accessing the bridges, such as local LAN, cloud, and mDNS, ensuring flexibility in deployment scenarios. The plugin can handle diverse configurations such as room assignments for devices, which optimizes the evaluation of statuses, especially in environments with many devices. Furthermore, it provides various monitoring metrics applicable to lights, temperature sensors, motion sensors, and device power status, thereby enabling comprehensive insights into a smart home setup. The configuration options allow users to tailor their connections to optimize performance and security, including optional TLS configurations for secure communication.
MySQL
Telegraf’s SQL output plugin is designed to seamlessly write metric data to a SQL database by dynamically creating tables and columns based on the incoming metrics. When configured for MySQL, the plugin leverages the go-sql-driver/mysql, which requires enabling the ANSI_QUOTES SQL mode to ensure proper handling of quoted identifiers. This dynamic schema creation approach ensures that each metric is stored in its own table with a structure derived from its fields and tags, providing a detailed, timestamped record of system performance. The flexibility of the plugin allows it to handle high-throughput environments, making it ideal for scenarios that demand robust, granular metric logging and historical data analysis.
Configuration
Phillips Hue Bridge
[[inputs.huebridge]]
## URL of bridges to query in the form ://:@/
## See documentation for available schemes.
bridges = [ "address://:@/" ]
## Manual device to room assignments to apply during status evaluation.
## E.g. for motion sensors which are reported without a room assignment.
# room_assignments = { "Motion sensor 1" = "Living room", "Motion sensor 2" = "Corridor" }
## Timeout for gathering information
# timeout = "10s"
## Optional TLS Config
# tls_ca = "/etc/telegraf/ca.pem"
# tls_cert = "/etc/telegraf/cert.pem"
# tls_key = "/etc/telegraf/key.pem"
# tls_key_pwd = "secret"
## Use TLS but skip chain & host verification
# insecure_skip_verify = false
</code></pre>
MySQL
[[outputs.sql]]
## Database driver
## Valid options: mssql (Microsoft SQL Server), mysql (MySQL), pgx (Postgres),
## sqlite (SQLite3), snowflake (snowflake.com) clickhouse (ClickHouse)
driver = "mysql"
## Data source name
## The format of the data source name is different for each database driver.
## See the plugin readme for details.
data_source_name = "username:password@tcp(host:port)/dbname"
## Timestamp column name
timestamp_column = "timestamp"
## Table creation template
## Available template variables:
## {TABLE} - table name as a quoted identifier
## {TABLELITERAL} - table name as a quoted string literal
## {COLUMNS} - column definitions (list of quoted identifiers and types)
table_template = "CREATE TABLE {TABLE}({COLUMNS})"
## Table existence check template
## Available template variables:
## {TABLE} - tablename as a quoted identifier
table_exists_template = "SELECT 1 FROM {TABLE} LIMIT 1"
## Initialization SQL
init_sql = "SET sql_mode='ANSI_QUOTES';"
## Maximum amount of time a connection may be idle. "0s" means connections are
## never closed due to idle time.
connection_max_idle_time = "0s"
## Maximum amount of time a connection may be reused. "0s" means connections
## are never closed due to age.
connection_max_lifetime = "0s"
## Maximum number of connections in the idle connection pool. 0 means unlimited.
connection_max_idle = 2
## Maximum number of open connections to the database. 0 means unlimited.
connection_max_open = 0
## NOTE: Due to the way TOML is parsed, tables must be at the END of the
## plugin definition, otherwise additional config options are read as part of the
## table
## Metric type to SQL type conversion
## The values on the left are the data types Telegraf has and the values on
## the right are the data types Telegraf will use when sending to a database.
##
## The database values used must be data types the destination database
## understands. It is up to the user to ensure that the selected data type is
## available in the database they are using. Refer to your database
## documentation for what data types are available and supported.
#[outputs.sql.convert]
# integer = "INT"
# real = "DOUBLE"
# text = "TEXT"
# timestamp = "TIMESTAMP"
# defaultvalue = "TEXT"
# unsigned = "UNSIGNED"
# bool = "BOOL"
# ## This setting controls the behavior of the unsigned value. By default the
# ## setting will take the integer value and append the unsigned value to it. The other
# ## option is "literal", which will use the actual value the user provides to
# ## the unsigned option. This is useful for a database like ClickHouse where
# ## the unsigned value should use a value like "uint64".
# # conversion_style = "unsigned_suffix"
Input and output integration examples
Phillips Hue Bridge
-
Automated Lighting Control Based on Room Occupancy: Utilize the Hue Bridge plugin to monitor motion sensors within various rooms of a home. When motion is detected, the system can automatically trigger the lights to turn on, providing convenience and energy efficiency. This integration could significantly enhance user experience and preferences, adapting the lighting to occupancy levels without manual intervention.
-
Environmental Monitoring in Smart Homes: Implement the Hue Bridge plugin to track temperature and light levels within the house. By continuously monitoring these metrics, users can create a comfortable indoor climate, adjusting heating and cooling systems based on temperature trends or activating lights based on light levels detected. This data-driven approach leads to smart home automation that responds to actual environmental conditions.
-
Integration with Home Automation Systems: Leverage this plugin to integrate Philips Hue Bridge statistics into broader home automation frameworks. For example, collecting light and temperature data can feed into a centralized dashboard that provides homeowners with insights about their energy usage patterns. Environments can be programmed to respond proactively to user habits, promoting efficiency and energy conservation.
-
Battery Monitoring for Smart Devices: Use the Hue Bridge plugin to monitor battery levels across various connected smart devices. By being alerted about low battery states, homeowners can take timely actions to replace or recharge devices, preventing outages and ensuring smooth operation of their smart home systems.
MySQL
-
Real-Time Web Analytics Storage: Leverage the plugin to capture website performance metrics and store them in MySQL. This setup enables teams to monitor user interactions, analyze traffic patterns, and dynamically adjust site features based on real-time data insights.
-
IoT Device Monitoring: Utilize the plugin to collect metrics from a network of IoT sensors and log them into a MySQL database. This use case supports continuous monitoring of device health and performance, allowing for predictive maintenance and immediate response to anomalies.
-
Financial Transaction Logging: Record high-frequency financial transaction data with precise timestamps. This approach supports robust audit trails, real-time fraud detection, and comprehensive historical analysis for compliance and reporting purposes.
-
Application Performance Benchmarking: Integrate the plugin with application performance monitoring systems to log metrics into MySQL. This facilitates detailed benchmarking and trend analysis over time, enabling organizations to identify performance bottlenecks and optimize resource allocation effectively.
Feedback
Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Related Integrations
Related Integrations
HTTP and InfluxDB Integration
The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.
View IntegrationKafka and InfluxDB Integration
This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.
View IntegrationKinesis and InfluxDB Integration
The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.
View Integration