Phillips Hue Bridge and Parquet Integration

Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.

info

This is not the recommended configuration for real-time query at scale. For query and compression optimization, high-speed ingest, and high availability, you may want to consider Phillips Hue Bridge and InfluxDB.

5B+

Telegraf downloads

#1

Time series database
Source: DB Engines

1B+

Downloads of InfluxDB

2,800+

Contributors

Table of Contents

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Input and output integration overview

This plugin gathers status from Hue Bridge devices using the CLIP API interface.

This plugin writes metrics to parquet files, utilizing a schema based on the metrics grouped by name. It supports file rotation and buffered writing for optimal performance.

Integration details

Phillips Hue Bridge

The Hue Bridge plugin allows users to gather real-time status from Philips Hue Bridge devices utilizing the CLIP API interface. By communicating with Hue Bridges, this plugin is capable of retrieving various metrics related to home lighting and environmental conditions. It offers multiple schemes for accessing the bridges, such as local LAN, cloud, and mDNS, ensuring flexibility in deployment scenarios. The plugin can handle diverse configurations such as room assignments for devices, which optimizes the evaluation of statuses, especially in environments with many devices. Furthermore, it provides various monitoring metrics applicable to lights, temperature sensors, motion sensors, and device power status, thereby enabling comprehensive insights into a smart home setup. The configuration options allow users to tailor their connections to optimize performance and security, including optional TLS configurations for secure communication.

Parquet

The Parquet output plugin for Telegraf writes metrics to parquet files, which are columnar storage formats optimized for analytics. By default, this plugin groups metrics by their name, writing them to a single file. If a metric’s schema does not align with existing schemas, those metrics are dropped. The plugin generates an Apache Arrow schema based on all grouped metrics, ensuring that the schema reflects the union of all fields and tags. It operates in a buffered manner, meaning it temporarily holds metrics in memory before writing them to disk for efficiency. Parquet files require proper closure to ensure readability, and this is crucial when using the plugin, as improper closure can lead to unreadable files. Additionally, the plugin supports file rotation after specific time intervals, preventing overwrites of existing files and schema conflicts when a file with the same name already exists.

Configuration

Phillips Hue Bridge

[[inputs.huebridge]]
  ## URL of bridges to query in the form ://:@
/ ## See documentation for available schemes. bridges = [ "address://:@/" ] ## Manual device to room assignments to apply during status evaluation. ## E.g. for motion sensors which are reported without a room assignment. # room_assignments = { "Motion sensor 1" = "Living room", "Motion sensor 2" = "Corridor" } ## Timeout for gathering information # timeout = "10s" ## Optional TLS Config # tls_ca = "/etc/telegraf/ca.pem" # tls_cert = "/etc/telegraf/cert.pem" # tls_key = "/etc/telegraf/key.pem" # tls_key_pwd = "secret" ## Use TLS but skip chain & host verification # insecure_skip_verify = false </code></pre>

Parquet

[[outputs.parquet]]
  ## Directory to write parquet files in. If a file already exists the output
  ## will attempt to continue using the existing file.
  # directory = "."
  
  ## Files are rotated after the time interval specified. When set to 0 no time
  ## based rotation is performed.
  # rotation_interval = "0h"
  
  ## Timestamp field name
  ## Field name to use to store the timestamp. If set to an empty string, then
  ## the timestamp is omitted.
  # timestamp_field_name = "timestamp"

Input and output integration examples

Phillips Hue Bridge

  1. Automated Lighting Control Based on Room Occupancy: Utilize the Hue Bridge plugin to monitor motion sensors within various rooms of a home. When motion is detected, the system can automatically trigger the lights to turn on, providing convenience and energy efficiency. This integration could significantly enhance user experience and preferences, adapting the lighting to occupancy levels without manual intervention.

  2. Environmental Monitoring in Smart Homes: Implement the Hue Bridge plugin to track temperature and light levels within the house. By continuously monitoring these metrics, users can create a comfortable indoor climate, adjusting heating and cooling systems based on temperature trends or activating lights based on light levels detected. This data-driven approach leads to smart home automation that responds to actual environmental conditions.

  3. Integration with Home Automation Systems: Leverage this plugin to integrate Philips Hue Bridge statistics into broader home automation frameworks. For example, collecting light and temperature data can feed into a centralized dashboard that provides homeowners with insights about their energy usage patterns. Environments can be programmed to respond proactively to user habits, promoting efficiency and energy conservation.

  4. Battery Monitoring for Smart Devices: Use the Hue Bridge plugin to monitor battery levels across various connected smart devices. By being alerted about low battery states, homeowners can take timely actions to replace or recharge devices, preventing outages and ensuring smooth operation of their smart home systems.

Parquet

  1. Data Lake Ingestion: Utilize the Parquet plugin to store metrics from various sources into a data lake. By writing metrics in parquet format, you establish a standardized and efficient way to manage time-series data, enabling faster querying capabilities and seamless integration with analytics tools like Apache Spark or AWS Athena. This setup can significantly improve data retrieval times and analysis workflows.

  2. Long-term Storage of Metrics: Implement the Parquet plugin in a monitoring setup where metrics are collected over time from multiple applications. This allows for long-term storage of performance data in a compact format, making it cost-effective to store vast amounts of historical data while preserving the ability for quick retrieval and analysis later on. By archiving metrics in parquet files, organizations can maintain compliance and create detailed reports from historical performance trends.

  3. Analytics and Reporting: After writing metrics to parquet files, leverage tools like Apache Arrow or PyArrow to perform complex analytical queries directly on the files without needing to load all the data into memory. This can enhance reporting capabilities, allowing teams to generate insights and visualization from large datasets efficiently, thereby improving decision-making processes based on accurate, up-to-date performance metrics.

  4. Integrating with Data Warehouses: Use the Parquet plugin as part of a data integration pipeline that feeds into a modern data warehouse. By converting metrics to parquet format, the data can be easily ingested by systems like Snowflake or Google BigQuery, enabling powerful analytics and business intelligence capabilities that drive actionable insights from the collected metrics.

Feedback

Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Related Integrations

HTTP and InfluxDB Integration

The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.

View Integration

Kafka and InfluxDB Integration

This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.

View Integration

Kinesis and InfluxDB Integration

The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.

View Integration