RabbitMQ and Librato Integration
Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.
5B+
Telegraf downloads
#1
Time series database
Source: DB Engines
1B+
Downloads of InfluxDB
2,800+
Contributors
Table of Contents
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Input and output integration overview
This plugin reads metrics from RabbitMQ servers, providing essential insights into the performance and state of the messaging system.
The Librato plugin for Telegraf is designed to facilitate seamless integration with the Librato Metrics API, allowing for efficient metric reporting and monitoring.
Integration details
RabbitMQ
The RabbitMQ plugin for Telegraf allows users to gather metrics from RabbitMQ servers via the RabbitMQ Management Plugin. This capability is crucial for monitoring the performance and health of RabbitMQ instances, which are widely utilized for message queuing and processing in various applications. The plugin provides comprehensive insights into key RabbitMQ metrics, including message rates, queue depths, and node health statistics, thereby enabling operators to maintain optimal performance and robustness of their messaging infrastructure. Additionally, it supports secret-stores for managing sensitive credentials securely, making integration with existing systems smoother. Configuration options allow for flexibility in specifying the nodes, queues, and exchanges to monitor, providing valuable adaptability for diverse deployment scenarios.
Librato
The Librato plugin enables Telegraf to send metrics to the Librato Metrics API. To authenticate, users must provide an api_user
and api_token
, which can be acquired from the Librato account settings. This integration allows for efficient monitoring and reporting of custom metrics within the Librato platform. The plugin also utilizes a source_tag
option that can enrich the metrics with contextual information from Point Tags; however, it does not currently support sending associated Point Tags. It is essential to note that any point value sent that cannot be converted to a float64 type will be skipped, ensuring that only valid metrics are processed and sent to Librato. The plugin also supports secret-store options for managing sensitive authentication credentials securely, facilitating best practices in credential management.
Configuration
RabbitMQ
[[inputs.rabbitmq]]
## Management Plugin url. (default: http://localhost:15672)
# url = "http://localhost:15672"
## Tag added to rabbitmq_overview series; deprecated: use tags
# name = "rmq-server-1"
## Credentials
# username = "guest"
# password = "guest"
## Optional TLS Config
# tls_ca = "/etc/telegraf/ca.pem"
# tls_cert = "/etc/telegraf/cert.pem"
# tls_key = "/etc/telegraf/key.pem"
## Use TLS but skip chain & host verification
# insecure_skip_verify = false
## Optional request timeouts
## ResponseHeaderTimeout, if non-zero, specifies the amount of time to wait
## for a server's response headers after fully writing the request.
# header_timeout = "3s"
##
## client_timeout specifies a time limit for requests made by this client.
## Includes connection time, any redirects, and reading the response body.
# client_timeout = "4s"
## A list of nodes to gather as the rabbitmq_node measurement. If not
## specified, metrics for all nodes are gathered.
# nodes = ["rabbit@node1", "rabbit@node2"]
## A list of queues to gather as the rabbitmq_queue measurement. If not
## specified, metrics for all queues are gathered.
## Deprecated in 1.6: Use queue_name_include instead.
# queues = ["telegraf"]
## A list of exchanges to gather as the rabbitmq_exchange measurement. If not
## specified, metrics for all exchanges are gathered.
# exchanges = ["telegraf"]
## Metrics to include and exclude. Globs accepted.
## Note that an empty array for both will include all metrics
## Currently the following metrics are supported: "exchange", "federation", "node", "overview", "queue"
# metric_include = []
# metric_exclude = []
## Queues to include and exclude. Globs accepted.
## Note that an empty array for both will include all queues
# queue_name_include = []
# queue_name_exclude = []
## Federation upstreams to include and exclude specified as an array of glob
## pattern strings. Federation links can also be limited by the queue and
## exchange filters.
# federation_upstream_include = []
# federation_upstream_exclude = []
Librato
[[outputs.librato]]
## Librato API Docs
## http://dev.librato.com/v1/metrics-authentication
## Librato API user
api_user = "[email protected]" # required.
## Librato API token
api_token = "my-secret-token" # required.
## Debug
# debug = false
## Connection timeout.
# timeout = "5s"
## Output source Template (same as graphite buckets)
## see https://github.com/influxdata/telegraf/blob/master/docs/DATA_FORMATS_OUTPUT.md#graphite
## This template is used in librato's source (not metric's name)
template = "host"
Input and output integration examples
RabbitMQ
-
Monitoring Queue Performance Metrics: Use the RabbitMQ plugin to keep track of queue performance over time. This involves setting up monitoring dashboards that visualize crucial queue metrics such as message rates, the number of consumers, and message delivery rates. With this information, teams can proactively address any bottlenecks or performance issues by analyzing trends and making data-informed decisions about scaling or optimizing their RabbitMQ configuration.
-
Alerting on System Health: Integrate the RabbitMQ plugin with an alerting system to notify operational teams of potential issues within RabbitMQ instances. For example, if the number of unacknowledged messages reaches a critical threshold or if queues become overwhelmed, alerts can trigger, allowing for immediate investigation and swift remedial action to maintain the health of message flows.
-
Analyzing Message Processing Metrics: Employ the plugin to gather detailed metrics on message processing performance, such as the rates of messages published, acknowledged, and redelivered. By analyzing these metrics, teams can evaluate the efficiency of their message consumer applications and make adjustments to configuration or code where necessary, thereby enhancing overall system throughput and resilience.
-
Cross-System Data Integration: Leverage the metrics collected by the RabbitMQ plugin to integrate data flows between RabbitMQ and other systems or services. For example, use the gathered metrics to drive automated workflows or analytics pipelines that utilize messages processed in RabbitMQ, enabling organizations to optimize workflows and enhance data agility across their ecosystems.
Librato
-
Real-time Application Monitoring: Utilize Librato to collect performance metrics from a web application in real-time. This setup involves sending response times, error rates, and user interactions to Librato, allowing developers to monitor the application’s health and performance metrics closely. By analyzing these metrics, teams can quickly identify and address performance bottlenecks or application failures before they impact end users.
-
Infrastructure Metrics Aggregation: Leverage this plugin to gather and send metrics from various infrastructure components, such as servers or containers, to Librato for centralized monitoring. Configuring the plugin to send CPU, memory usage, and disk I/O metrics enables system administrators to have a comprehensive view of infrastructure performance, assisting in capacity planning and resource optimization strategies.
-
Custom Metrics for Business Operations: Feed business-specific metrics, such as sales transactions or user sign-ups, to the Librato service using this plugin. By tracking these custom metrics, businesses can gain insights into their operational performance and make data-driven decisions to enhance their strategies, marketing efforts, or product development initiatives.
-
Anomaly Detection in Metrics: Implement monitoring tools that utilize machine learning for anomaly detection. By continuously sending real-time metrics to Librato, teams can analyze trends and automatically flag unusual behavior, such as sudden spikes in latency or unusual traffic patterns, enabling timely intervention and troubleshooting.
Feedback
Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Related Integrations
Related Integrations
HTTP and InfluxDB Integration
The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.
View IntegrationKafka and InfluxDB Integration
This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.
View IntegrationKinesis and InfluxDB Integration
The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.
View Integration