RabbitMQ and OSI PI Integration
Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.
5B+
Telegraf downloads
#1
Time series database
Source: DB Engines
1B+
Downloads of InfluxDB
2,800+
Contributors
Table of Contents
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Input and output integration overview
This plugin reads metrics from RabbitMQ servers, providing essential insights into the performance and state of the messaging system.
This setup converts Telegraf into a lightweight PI Web API publisher, letting you push any Telegraf metric into the OSI PI System with a simple HTTP POST.
Integration details
RabbitMQ
The RabbitMQ plugin for Telegraf allows users to gather metrics from RabbitMQ servers via the RabbitMQ Management Plugin. This capability is crucial for monitoring the performance and health of RabbitMQ instances, which are widely utilized for message queuing and processing in various applications. The plugin provides comprehensive insights into key RabbitMQ metrics, including message rates, queue depths, and node health statistics, thereby enabling operators to maintain optimal performance and robustness of their messaging infrastructure. Additionally, it supports secret-stores for managing sensitive credentials securely, making integration with existing systems smoother. Configuration options allow for flexibility in specifying the nodes, queues, and exchanges to monitor, providing valuable adaptability for diverse deployment scenarios.
OSI PI
OSI PI is an data management and analytics platform used in energy, manufacturing, and critical infrastructure. The PI Web API is its REST interface, exposing endpoints such as /piwebapi/streams/{WebId}/value that accept JSON payloads containing a Timestamp
and Value
. By pairing Telegraf’s flexible HTTP output with this endpoint, any metric Telegraf collects—SNMP counters, Modbus readings, Kubernetes stats—can be written directly into PI without installing proprietary interfaces. The configuration above authenticates with Basic or Kerberos, serializes each batch to JSON, and renders a minimal body template that aligns with PI Web API’s single-value write contract. Because Telegraf already supports batching, TLS, proxies, and custom headers, this approach scales from edge gateways to cloud VMs, allowing organizations to back-fill historical data, stream live telemetry, or mirror non-PI sources (e.g., Prometheus) into the PI data archive. It also sidesteps older SDK dependencies and enables hybrid architectures where PI remains on-prem while Telegraf agents run in containers or IIoT devices.
Configuration
RabbitMQ
[[inputs.rabbitmq]]
## Management Plugin url. (default: http://localhost:15672)
# url = "http://localhost:15672"
## Tag added to rabbitmq_overview series; deprecated: use tags
# name = "rmq-server-1"
## Credentials
# username = "guest"
# password = "guest"
## Optional TLS Config
# tls_ca = "/etc/telegraf/ca.pem"
# tls_cert = "/etc/telegraf/cert.pem"
# tls_key = "/etc/telegraf/key.pem"
## Use TLS but skip chain & host verification
# insecure_skip_verify = false
## Optional request timeouts
## ResponseHeaderTimeout, if non-zero, specifies the amount of time to wait
## for a server's response headers after fully writing the request.
# header_timeout = "3s"
##
## client_timeout specifies a time limit for requests made by this client.
## Includes connection time, any redirects, and reading the response body.
# client_timeout = "4s"
## A list of nodes to gather as the rabbitmq_node measurement. If not
## specified, metrics for all nodes are gathered.
# nodes = ["rabbit@node1", "rabbit@node2"]
## A list of queues to gather as the rabbitmq_queue measurement. If not
## specified, metrics for all queues are gathered.
## Deprecated in 1.6: Use queue_name_include instead.
# queues = ["telegraf"]
## A list of exchanges to gather as the rabbitmq_exchange measurement. If not
## specified, metrics for all exchanges are gathered.
# exchanges = ["telegraf"]
## Metrics to include and exclude. Globs accepted.
## Note that an empty array for both will include all metrics
## Currently the following metrics are supported: "exchange", "federation", "node", "overview", "queue"
# metric_include = []
# metric_exclude = []
## Queues to include and exclude. Globs accepted.
## Note that an empty array for both will include all queues
# queue_name_include = []
# queue_name_exclude = []
## Federation upstreams to include and exclude specified as an array of glob
## pattern strings. Federation links can also be limited by the queue and
## exchange filters.
# federation_upstream_include = []
# federation_upstream_exclude = []
OSI PI
[[outputs.http]]
## PI Web API endpoint for writing a single value to a PI Point by Web ID
url = "https://${PI_HOST}/piwebapi/streams/${WEB_ID}/value"
## Use POST for each batch
method = "POST"
content_type = "application/json"
## Basic-auth header (base64-encoded "DOMAIN\\user:password")
headers = { Authorization = "Basic ${BASIC_AUTH}" }
## Serialize Telegraf metrics as JSON
data_format = "json"
json_timestamp_units = "1ms"
## Render the JSON body that PI Web API expects
body_template = """
{{ range .Metrics -}}
{ "Timestamp": "{{ .timestamp | formatDate \"2006-01-02T15:04:05Z07:00\" }}", "Value": {{ index .fields 0 }} }
{{ end -}}
"""
## Tune networking / batching if needed
# timeout = "10s"
# batch_size = 1
Input and output integration examples
RabbitMQ
-
Monitoring Queue Performance Metrics: Use the RabbitMQ plugin to keep track of queue performance over time. This involves setting up monitoring dashboards that visualize crucial queue metrics such as message rates, the number of consumers, and message delivery rates. With this information, teams can proactively address any bottlenecks or performance issues by analyzing trends and making data-informed decisions about scaling or optimizing their RabbitMQ configuration.
-
Alerting on System Health: Integrate the RabbitMQ plugin with an alerting system to notify operational teams of potential issues within RabbitMQ instances. For example, if the number of unacknowledged messages reaches a critical threshold or if queues become overwhelmed, alerts can trigger, allowing for immediate investigation and swift remedial action to maintain the health of message flows.
-
Analyzing Message Processing Metrics: Employ the plugin to gather detailed metrics on message processing performance, such as the rates of messages published, acknowledged, and redelivered. By analyzing these metrics, teams can evaluate the efficiency of their message consumer applications and make adjustments to configuration or code where necessary, thereby enhancing overall system throughput and resilience.
-
Cross-System Data Integration: Leverage the metrics collected by the RabbitMQ plugin to integrate data flows between RabbitMQ and other systems or services. For example, use the gathered metrics to drive automated workflows or analytics pipelines that utilize messages processed in RabbitMQ, enabling organizations to optimize workflows and enhance data agility across their ecosystems.
OSI PI
-
Remote Pump Stations Telemetry Bridge: Install Telegraf on edge gateways at oil-field pump stations, gather flow-meter and vibration readings over Modbus, and POST them to the PI Web API. Operations teams view real-time data in PI Vision without deploying heavyweight PI interfaces, while bandwidth-friendly batching keeps satellite links economical.
-
Green-Energy Micro-Grid Dashboard: Export inverter, battery, and weather metrics from MQTT into Telegraf, which relays them to PI. PI AF analytics can calculate real-time power balance and feed a campus dashboard; historical deltas inform sustainability reports.
-
Brownfield SCADA Modernization: Legacy PLCs logged to CSV are ingested by Telegraf’s
tail
input; each row is parsed and immediately sent to PI via HTTP, creating a live data stream that co-exists with archival files while the SCADA upgrade proceeds incrementally. -
Synthetic Data Generator for Training: Telegraf’s
exec
input can run a script that emits simulated sensor patterns. Posting those metrics to a non-production PI server through the Web API supplies realistic datasets for PI Vision training sessions without risking production tags.
Feedback
Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Related Integrations
Related Integrations
HTTP and InfluxDB Integration
The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.
View IntegrationKafka and InfluxDB Integration
This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.
View IntegrationKinesis and InfluxDB Integration
The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.
View Integration