RabbitMQ and Sensu Integration
Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.
5B+
Telegraf downloads
#1
Time series database
Source: DB Engines
1B+
Downloads of InfluxDB
2,800+
Contributors
Table of Contents
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Input and output integration overview
This plugin reads metrics from RabbitMQ servers, providing essential insights into the performance and state of the messaging system.
This plugin writes metrics events to Sensu via its HTTP events API, enabling seamless integration with the Sensu monitoring platform.
Integration details
RabbitMQ
The RabbitMQ plugin for Telegraf allows users to gather metrics from RabbitMQ servers via the RabbitMQ Management Plugin. This capability is crucial for monitoring the performance and health of RabbitMQ instances, which are widely utilized for message queuing and processing in various applications. The plugin provides comprehensive insights into key RabbitMQ metrics, including message rates, queue depths, and node health statistics, thereby enabling operators to maintain optimal performance and robustness of their messaging infrastructure. Additionally, it supports secret-stores for managing sensitive credentials securely, making integration with existing systems smoother. Configuration options allow for flexibility in specifying the nodes, queues, and exchanges to monitor, providing valuable adaptability for diverse deployment scenarios.
Sensu
This plugin writes metrics events to Sensu via its HTTP events API. Sensu is a monitoring system that enables users to collect, analyze, and manage metrics from various components in their infrastructure. The plugin facilitates the integration of Telegraf, a server agent for collecting and reporting metrics, with the Sensu monitoring platform. Users can configure settings such as backend and agent API URLs, API keys for authentication, and optional TLS settings. The plugin’s core functionality is centered around sending metric events, including check and entity specifications, to Sensu, allowing for comprehensive monitoring and alerting. The API reference provides extensive details about the events and metrics structure, ensuring users can efficiently leverage Sensu’s capabilities for observability and incident response.
Configuration
RabbitMQ
[[inputs.rabbitmq]]
## Management Plugin url. (default: http://localhost:15672)
# url = "http://localhost:15672"
## Tag added to rabbitmq_overview series; deprecated: use tags
# name = "rmq-server-1"
## Credentials
# username = "guest"
# password = "guest"
## Optional TLS Config
# tls_ca = "/etc/telegraf/ca.pem"
# tls_cert = "/etc/telegraf/cert.pem"
# tls_key = "/etc/telegraf/key.pem"
## Use TLS but skip chain & host verification
# insecure_skip_verify = false
## Optional request timeouts
## ResponseHeaderTimeout, if non-zero, specifies the amount of time to wait
## for a server's response headers after fully writing the request.
# header_timeout = "3s"
##
## client_timeout specifies a time limit for requests made by this client.
## Includes connection time, any redirects, and reading the response body.
# client_timeout = "4s"
## A list of nodes to gather as the rabbitmq_node measurement. If not
## specified, metrics for all nodes are gathered.
# nodes = ["rabbit@node1", "rabbit@node2"]
## A list of queues to gather as the rabbitmq_queue measurement. If not
## specified, metrics for all queues are gathered.
## Deprecated in 1.6: Use queue_name_include instead.
# queues = ["telegraf"]
## A list of exchanges to gather as the rabbitmq_exchange measurement. If not
## specified, metrics for all exchanges are gathered.
# exchanges = ["telegraf"]
## Metrics to include and exclude. Globs accepted.
## Note that an empty array for both will include all metrics
## Currently the following metrics are supported: "exchange", "federation", "node", "overview", "queue"
# metric_include = []
# metric_exclude = []
## Queues to include and exclude. Globs accepted.
## Note that an empty array for both will include all queues
# queue_name_include = []
# queue_name_exclude = []
## Federation upstreams to include and exclude specified as an array of glob
## pattern strings. Federation links can also be limited by the queue and
## exchange filters.
# federation_upstream_include = []
# federation_upstream_exclude = []
Sensu
[[outputs.sensu]]
## BACKEND API URL is the Sensu Backend API root URL to send metrics to
## (protocol, host, and port only). The output plugin will automatically
## append the corresponding backend API path
## /api/core/v2/namespaces/:entity_namespace/events/:entity_name/:check_name).
##
## Backend Events API reference:
## https://docs.sensu.io/sensu-go/latest/api/events/
##
## AGENT API URL is the Sensu Agent API root URL to send metrics to
## (protocol, host, and port only). The output plugin will automatically
## append the correspeonding agent API path (/events).
##
## Agent API Events API reference:
## https://docs.sensu.io/sensu-go/latest/api/events/
##
## NOTE: if backend_api_url and agent_api_url and api_key are set, the output
## plugin will use backend_api_url. If backend_api_url and agent_api_url are
## not provided, the output plugin will default to use an agent_api_url of
## http://127.0.0.1:3031
##
# backend_api_url = "http://127.0.0.1:8080"
# agent_api_url = "http://127.0.0.1:3031"
## API KEY is the Sensu Backend API token
## Generate a new API token via:
##
## $ sensuctl cluster-role create telegraf --verb create --resource events,entities
## $ sensuctl cluster-role-binding create telegraf --cluster-role telegraf --group telegraf
## $ sensuctl user create telegraf --group telegraf --password REDACTED
## $ sensuctl api-key grant telegraf
##
## For more information on Sensu RBAC profiles & API tokens, please visit:
## - https://docs.sensu.io/sensu-go/latest/reference/rbac/
## - https://docs.sensu.io/sensu-go/latest/reference/apikeys/
##
# api_key = "${SENSU_API_KEY}"
## Optional TLS Config
# tls_ca = "/etc/telegraf/ca.pem"
# tls_cert = "/etc/telegraf/cert.pem"
# tls_key = "/etc/telegraf/key.pem"
## Use TLS but skip chain & host verification
# insecure_skip_verify = false
## Timeout for HTTP message
# timeout = "5s"
## HTTP Content-Encoding for write request body, can be set to "gzip" to
## compress body or "identity" to apply no encoding.
# content_encoding = "identity"
## NOTE: Due to the way TOML is parsed, tables must be at the END of the
## plugin definition, otherwise additional config options are read as part of
## the table
## Sensu Event details
##
## Below are the event details to be sent to Sensu. The main portions of the
## event are the check, entity, and metrics specifications. For more information
## on Sensu events and its components, please visit:
## - Events - https://docs.sensu.io/sensu-go/latest/reference/events
## - Checks - https://docs.sensu.io/sensu-go/latest/reference/checks
## - Entities - https://docs.sensu.io/sensu-go/latest/reference/entities
## - Metrics - https://docs.sensu.io/sensu-go/latest/reference/events#metrics
##
## Check specification
## The check name is the name to give the Sensu check associated with the event
## created. This maps to check.metadata.name in the event.
[outputs.sensu.check]
name = "telegraf"
## Entity specification
## Configure the entity name and namespace, if necessary. This will be part of
## the entity.metadata in the event.
##
## NOTE: if the output plugin is configured to send events to a
## backend_api_url and entity_name is not set, the value returned by
## os.Hostname() will be used; if the output plugin is configured to send
## events to an agent_api_url, entity_name and entity_namespace are not used.
# [outputs.sensu.entity]
# name = "server-01"
# namespace = "default"
## Metrics specification
## Configure the tags for the metrics that are sent as part of the Sensu event
# [outputs.sensu.tags]
# source = "telegraf"
## Configure the handler(s) for processing the provided metrics
# [outputs.sensu.metrics]
# handlers = ["influxdb","elasticsearch"]
Input and output integration examples
RabbitMQ
-
Monitoring Queue Performance Metrics: Use the RabbitMQ plugin to keep track of queue performance over time. This involves setting up monitoring dashboards that visualize crucial queue metrics such as message rates, the number of consumers, and message delivery rates. With this information, teams can proactively address any bottlenecks or performance issues by analyzing trends and making data-informed decisions about scaling or optimizing their RabbitMQ configuration.
-
Alerting on System Health: Integrate the RabbitMQ plugin with an alerting system to notify operational teams of potential issues within RabbitMQ instances. For example, if the number of unacknowledged messages reaches a critical threshold or if queues become overwhelmed, alerts can trigger, allowing for immediate investigation and swift remedial action to maintain the health of message flows.
-
Analyzing Message Processing Metrics: Employ the plugin to gather detailed metrics on message processing performance, such as the rates of messages published, acknowledged, and redelivered. By analyzing these metrics, teams can evaluate the efficiency of their message consumer applications and make adjustments to configuration or code where necessary, thereby enhancing overall system throughput and resilience.
-
Cross-System Data Integration: Leverage the metrics collected by the RabbitMQ plugin to integrate data flows between RabbitMQ and other systems or services. For example, use the gathered metrics to drive automated workflows or analytics pipelines that utilize messages processed in RabbitMQ, enabling organizations to optimize workflows and enhance data agility across their ecosystems.
Sensu
-
Real-Time Infrastructure Monitoring: Utilize the Sensu plugin to send performance metrics from various servers and services directly to Sensu. This real-time data flow enables teams to visualize infrastructure health, track resource usage, and receive immediate alerts for any anomalies detected. By centralizing monitoring through Sensu, organizations can create a holistic view of their systems and respond swiftly to issues.
-
Automated Incident Response Workflows: Leverage the plugin to automatically trigger incident response workflows based on the metrics events sent to Sensu. For example, if CPU usage exceeds a defined threshold, the Sensu system can be configured to alert the operations team, which can then initiate automated remediation processes, reducing downtime and maintaining system reliability. This integration allows for proactive management of system resources.
-
Dynamic Scaling of Resources: Use the Sensu plugin to feed metrics into an auto-scaling system that adjusts resources based on demand. By tracking metrics like request load and resource utilization, organizations can automatically scale their infrastructure up or down, ensuring optimal performance and cost efficiency without manual intervention.
-
Centralized Logging and Monitoring: Combine the Sensu with logging tools to send logs and performance metrics to a centralized monitoring system. This comprehensive approach allows teams to correlate logs with metric events, providing deeper insights into system behavior and performance, which aids in troubleshooting and performance optimization over time.
Feedback
Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Related Integrations
Related Integrations
HTTP and InfluxDB Integration
The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.
View IntegrationKafka and InfluxDB Integration
This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.
View IntegrationKinesis and InfluxDB Integration
The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.
View Integration