SNMP Trap and Librato Integration
Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.
5B+
Telegraf downloads
#1
Time series database
Source: DB Engines
1B+
Downloads of InfluxDB
2,800+
Contributors
Table of Contents
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Input and output integration overview
The SNMP Trap Telegraf plugin enables the receipt of SNMP notifications, facilitating comprehensive network monitoring by capturing important events from network devices.
The Librato plugin for Telegraf is designed to facilitate seamless integration with the Librato Metrics API, allowing for efficient metric reporting and monitoring.
Integration details
SNMP Trap
The SNMP Trap plugin serves as a receiving endpoint for SNMP notifications, known as traps and inform requests. Operating over UDP, it listens for incoming notifications, which can be configured to arrive on a specific port. This plugin is integral to network monitoring and management, allowing systems to collect and respond to SNMP traps sent from various devices across the network, including routers, switches, and servers. The plugin supports secure transmission options through SNMPv3, enabling authentication and encryption parameters to protect sensitive data. Additionally, it gives users the flexibility to configure multiple aspects of SNMP like MIB file locations, making it adaptable for various environments and use cases. Transitioning from the deprecated netsnmp backend to the more current gosmi backend is recommended to leverage its enhanced features and support. Users implementing this plugin can effectively monitor network events, automate responses to traps, and maintain a robust network monitoring infrastructure.
Librato
The Librato plugin enables Telegraf to send metrics to the Librato Metrics API. To authenticate, users must provide an api_user
and api_token
, which can be acquired from the Librato account settings. This integration allows for efficient monitoring and reporting of custom metrics within the Librato platform. The plugin also utilizes a source_tag
option that can enrich the metrics with contextual information from Point Tags; however, it does not currently support sending associated Point Tags. It is essential to note that any point value sent that cannot be converted to a float64 type will be skipped, ensuring that only valid metrics are processed and sent to Librato. The plugin also supports secret-store options for managing sensitive authentication credentials securely, facilitating best practices in credential management.
Configuration
SNMP Trap
[[inputs.snmp_trap]]
## Transport, local address, and port to listen on. Transport must
## be "udp://". Omit local address to listen on all interfaces.
## example: "udp://127.0.0.1:1234"
##
## Special permissions may be required to listen on a port less than
## 1024. See README.md for details
##
# service_address = "udp://:162"
##
## Path to mib files
## Used by the gosmi translator.
## To add paths when translating with netsnmp, use the MIBDIRS environment variable
# path = ["/usr/share/snmp/mibs"]
##
## Deprecated in 1.20.0; no longer running snmptranslate
## Timeout running snmptranslate command
# timeout = "5s"
## Snmp version; one of "1", "2c" or "3".
# version = "2c"
## SNMPv3 authentication and encryption options.
##
## Security Name.
# sec_name = "myuser"
## Authentication protocol; one of "MD5", "SHA", "SHA224", "SHA256", "SHA384", "SHA512" or "".
# auth_protocol = "MD5"
## Authentication password.
# auth_password = "pass"
## Security Level; one of "noAuthNoPriv", "authNoPriv", or "authPriv".
# sec_level = "authNoPriv"
## Privacy protocol used for encrypted messages; one of "DES", "AES", "AES192", "AES192C", "AES256", "AES256C" or "".
# priv_protocol = ""
## Privacy password used for encrypted messages.
# priv_password = ""
Librato
[[outputs.librato]]
## Librato API Docs
## http://dev.librato.com/v1/metrics-authentication
## Librato API user
api_user = "[email protected]" # required.
## Librato API token
api_token = "my-secret-token" # required.
## Debug
# debug = false
## Connection timeout.
# timeout = "5s"
## Output source Template (same as graphite buckets)
## see https://github.com/influxdata/telegraf/blob/master/docs/DATA_FORMATS_OUTPUT.md#graphite
## This template is used in librato's source (not metric's name)
template = "host"
Input and output integration examples
SNMP Trap
-
Centralized Network Monitoring: Integrate the SNMP Trap plugin into a centralized monitoring solution to receive alerts about network devices in real-time. By configuring the plugin to listen for traps from various routers and switches, network administrators can swiftly react to issues, such as device outages or critical thresholds being surpassed. This setup enables proactive management and quick resolutions to network problems, ensuring minimal downtime.
-
Automated Incident Response: Use the SNMP Trap plugin to trigger automated incident response workflows whenever specific traps are received. For instance, if a trap indicating a hardware failure is detected, an automated script could be initiated to gather diagnostics, notify support personnel, or even attempt a remediation action. This approach enhances the efficiency of IT operations by reducing manual interference and speeding up response times.
-
Network Performance Analytics: Deploy the SNMP Trap plugin to collect performance metrics along with traps for a comprehensive view of network health. By aggregating this data into analytics platforms, network teams can analyze trends, identify bottlenecks, and optimize performance based on historical data. This allows for informed decision-making and strategic planning around network upgrades or changes.
-
Integrating with Alerting Systems: Connect the SNMP Trap plugin to third-party alerting systems like PagerDuty or Slack. Upon receiving predefined traps, the plugin can send alerts to these systems, enabling teams to be instantly notified of important network events. This integration ensures that the right people are informed at the right time, helping maintain high service levels and quick issue resolution.
Librato
-
Real-time Application Monitoring: Utilize Librato to collect performance metrics from a web application in real-time. This setup involves sending response times, error rates, and user interactions to Librato, allowing developers to monitor the application’s health and performance metrics closely. By analyzing these metrics, teams can quickly identify and address performance bottlenecks or application failures before they impact end users.
-
Infrastructure Metrics Aggregation: Leverage this plugin to gather and send metrics from various infrastructure components, such as servers or containers, to Librato for centralized monitoring. Configuring the plugin to send CPU, memory usage, and disk I/O metrics enables system administrators to have a comprehensive view of infrastructure performance, assisting in capacity planning and resource optimization strategies.
-
Custom Metrics for Business Operations: Feed business-specific metrics, such as sales transactions or user sign-ups, to the Librato service using this plugin. By tracking these custom metrics, businesses can gain insights into their operational performance and make data-driven decisions to enhance their strategies, marketing efforts, or product development initiatives.
-
Anomaly Detection in Metrics: Implement monitoring tools that utilize machine learning for anomaly detection. By continuously sending real-time metrics to Librato, teams can analyze trends and automatically flag unusual behavior, such as sudden spikes in latency or unusual traffic patterns, enabling timely intervention and troubleshooting.
Feedback
Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Related Integrations
Related Integrations
HTTP and InfluxDB Integration
The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.
View IntegrationKafka and InfluxDB Integration
This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.
View IntegrationKinesis and InfluxDB Integration
The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.
View Integration