Supervisor and Azure Application Insights Integration
Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.
5B+
Telegraf downloads
#1
Time series database
Source: DB Engines
1B+
Downloads of InfluxDB
2,800+
Contributors
Table of Contents
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Input and output integration overview
This plugin gathers information about processes running under Supervisor using the XML-RPC API.
This plugin writes Telegraf metrics to Azure Application Insights, enabling powerful monitoring and diagnostics.
Integration details
Supervisor
The Supervisor plugin for Telegraf is designed to collect metrics about processes managed by the Supervisor process control system using its XML-RPC API. The plugin is able to track various metrics, including process states and uptime, and provides options for configuring which metrics to collect through include or exclude lists. This integration is particularly useful for monitoring applications running under Supervisor, providing insights into their operational status and performance metrics. A minimum tested Supervisor version is 3.3.2, and it is recommended to secure the HTTP server with basic authentication for better security.
Azure Application Insights
The Azure Application Insights plugin integrates Telegraf with Azure’s Application Insights service, facilitating the seamless transmission of metrics from various sources to a centralized monitoring platform. This plugin empowers users to harness the capabilities of Azure Application Insights, a powerful application performance management tool, allowing developers and IT operations teams to gain valuable insights into the performance, availability, and usage of their applications. By employing this plugin, users can monitor application telemetry and operational data efficiently, contributing to better diagnostics and improved application performance.
Key features of this plugin include the ability to specify an instrumentation key for the Application Insights resource, configure the endpoint URL for tracking, and enable additional diagnostic logging for a more comprehensive analysis. Furthermore, the plugin provides context tagging capabilities, allowing the addition of specific Application Insights context tags to enhance the contextual information associated with metrics being sent. These features collectively make the Azure Application Insights Output Plugin a vital tool for organizations looking to optimize their monitoring capabilities within Azure.
Configuration
Supervisor
[[inputs.supervisor]]
## Url of supervisor's XML-RPC endpoint if basic auth enabled in supervisor http server,
## than you have to add credentials to url (ex. http://login:pass@localhost:9001/RPC2)
# url="http://localhost:9001/RPC2"
## With settings below you can manage gathering additional information about processes
## If both of them empty, then all additional information will be collected.
## Currently supported supported additional metrics are: pid, rc
# metrics_include = []
# metrics_exclude = ["pid", "rc"]
Azure Application Insights
[[outputs.application_insights]]
## Instrumentation key of the Application Insights resource.
instrumentation_key = "xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxx"
## Regions that require endpoint modification https://docs.microsoft.com/en-us/azure/azure-monitor/app/custom-endpoints
# endpoint_url = "https://dc.services.visualstudio.com/v2/track"
## Timeout for closing (default: 5s).
# timeout = "5s"
## Enable additional diagnostic logging.
# enable_diagnostic_logging = false
## NOTE: Due to the way TOML is parsed, tables must be at the END of the
## plugin definition, otherwise additional config options are read as part of
## the table
## Context Tag Sources add Application Insights context tags to a tag value.
##
## For list of allowed context tag keys see:
## https://github.com/microsoft/ApplicationInsights-Go/blob/master/appinsights/contracts/contexttagkeys.go
# [outputs.application_insights.context_tag_sources]
# "ai.cloud.role" = "kubernetes_container_name"
# "ai.cloud.roleInstance" = "kubernetes_pod_name"
Input and output integration examples
Supervisor
-
Centralized Monitoring Dashboard: Implement this plugin to feed Supervisor metrics directly into a centralized monitoring dashboard, allowing teams to visualize the health and performance of their applications in real-time. This integration enables quick identification of issues, helps track service performance over time, and aids in capacity planning based on observed trends.
-
Alerting for Process Failures: Utilize the metrics gathered by the Supervisor plugin to create an alerting mechanism that notifies engineers when critical processes go down or enter a fatal state. By setting thresholds in your monitoring system, teams can respond proactively to potential problems, minimizing downtime and ensuring system reliability.
-
Historical Analysis of Process States: Store the metrics collected over time to analyze process state changes and patterns. By examining historical data, teams can identify recurring issues, track the impact of deployment changes, and optimize resource allocation based on process trends, leading to improved overall system performance.
-
Integration with Incident Management Systems: Configure the Supervisor plugin to automatically send alerts to incident management systems like PagerDuty or OpsGenie when a process reaches a critical state. This integration streamlines the incident response process, ensuring that the right team members are notified promptly and can take action without delay.
Azure Application Insights
-
Application Performance Monitoring: Utilize the Azure Application Insights plugin to continuously monitor the performance of your web applications or microservices. By sending Telegraf metrics directly to Application Insights, teams can visualize real-time application performance data, enabling proactive tuning and optimization of application resources. This setup not only enhances the reliability of applications but also ensures user satisfaction through consistent performance monitoring.
-
Integrated Logging and Telemetry: Combine this plugin with centralized logging solutions to provide a comprehensive observability stack. By sending telecom data to Azure Application Insights, teams can correlate performance metrics with log data and gain deeper insights into application behavior, allowing for more efficient troubleshooting and root cause analysis.
-
Contextual Monitoring of Cloud Resources: Use the context tagging feature to enrich your application metrics with specific contextual information related to your cloud environment. This enhanced context can be invaluable for understanding the performance of cloud-native applications, enabling better scaling decisions and resource management based on real usage patterns.
-
Real-time Alerts Setup: Configure Application Insights to trigger alerts based on specific metrics received via this plugin. This allows teams to be notified of performance degradation or anomalies in real-time, enabling immediate action to mitigate issues and maintain high availability of applications.
Feedback
Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Related Integrations
Related Integrations
HTTP and InfluxDB Integration
The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.
View IntegrationKafka and InfluxDB Integration
This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.
View IntegrationKinesis and InfluxDB Integration
The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.
View Integration