Supervisor and OSI PI Integration
Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.
5B+
Telegraf downloads
#1
Time series database
Source: DB Engines
1B+
Downloads of InfluxDB
2,800+
Contributors
Table of Contents
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Input and output integration overview
This plugin gathers information about processes running under Supervisor using the XML-RPC API.
This setup converts Telegraf into a lightweight PI Web API publisher, letting you push any Telegraf metric into the OSI PI System with a simple HTTP POST.
Integration details
Supervisor
The Supervisor plugin for Telegraf is designed to collect metrics about processes managed by the Supervisor process control system using its XML-RPC API. The plugin is able to track various metrics, including process states and uptime, and provides options for configuring which metrics to collect through include or exclude lists. This integration is particularly useful for monitoring applications running under Supervisor, providing insights into their operational status and performance metrics. A minimum tested Supervisor version is 3.3.2, and it is recommended to secure the HTTP server with basic authentication for better security.
OSI PI
OSI PI is an data management and analytics platform used in energy, manufacturing, and critical infrastructure. The PI Web API is its REST interface, exposing endpoints such as /piwebapi/streams/{WebId}/value that accept JSON payloads containing a Timestamp
and Value
. By pairing Telegraf’s flexible HTTP output with this endpoint, any metric Telegraf collects—SNMP counters, Modbus readings, Kubernetes stats—can be written directly into PI without installing proprietary interfaces. The configuration above authenticates with Basic or Kerberos, serializes each batch to JSON, and renders a minimal body template that aligns with PI Web API’s single-value write contract. Because Telegraf already supports batching, TLS, proxies, and custom headers, this approach scales from edge gateways to cloud VMs, allowing organizations to back-fill historical data, stream live telemetry, or mirror non-PI sources (e.g., Prometheus) into the PI data archive. It also sidesteps older SDK dependencies and enables hybrid architectures where PI remains on-prem while Telegraf agents run in containers or IIoT devices.
Configuration
Supervisor
[[inputs.supervisor]]
## Url of supervisor's XML-RPC endpoint if basic auth enabled in supervisor http server,
## than you have to add credentials to url (ex. http://login:pass@localhost:9001/RPC2)
# url="http://localhost:9001/RPC2"
## With settings below you can manage gathering additional information about processes
## If both of them empty, then all additional information will be collected.
## Currently supported supported additional metrics are: pid, rc
# metrics_include = []
# metrics_exclude = ["pid", "rc"]
OSI PI
[[outputs.http]]
## PI Web API endpoint for writing a single value to a PI Point by Web ID
url = "https://${PI_HOST}/piwebapi/streams/${WEB_ID}/value"
## Use POST for each batch
method = "POST"
content_type = "application/json"
## Basic-auth header (base64-encoded "DOMAIN\\user:password")
headers = { Authorization = "Basic ${BASIC_AUTH}" }
## Serialize Telegraf metrics as JSON
data_format = "json"
json_timestamp_units = "1ms"
## Render the JSON body that PI Web API expects
body_template = """
{{ range .Metrics -}}
{ "Timestamp": "{{ .timestamp | formatDate \"2006-01-02T15:04:05Z07:00\" }}", "Value": {{ index .fields 0 }} }
{{ end -}}
"""
## Tune networking / batching if needed
# timeout = "10s"
# batch_size = 1
Input and output integration examples
Supervisor
-
Centralized Monitoring Dashboard: Implement this plugin to feed Supervisor metrics directly into a centralized monitoring dashboard, allowing teams to visualize the health and performance of their applications in real-time. This integration enables quick identification of issues, helps track service performance over time, and aids in capacity planning based on observed trends.
-
Alerting for Process Failures: Utilize the metrics gathered by the Supervisor plugin to create an alerting mechanism that notifies engineers when critical processes go down or enter a fatal state. By setting thresholds in your monitoring system, teams can respond proactively to potential problems, minimizing downtime and ensuring system reliability.
-
Historical Analysis of Process States: Store the metrics collected over time to analyze process state changes and patterns. By examining historical data, teams can identify recurring issues, track the impact of deployment changes, and optimize resource allocation based on process trends, leading to improved overall system performance.
-
Integration with Incident Management Systems: Configure the Supervisor plugin to automatically send alerts to incident management systems like PagerDuty or OpsGenie when a process reaches a critical state. This integration streamlines the incident response process, ensuring that the right team members are notified promptly and can take action without delay.
OSI PI
-
Remote Pump Stations Telemetry Bridge: Install Telegraf on edge gateways at oil-field pump stations, gather flow-meter and vibration readings over Modbus, and POST them to the PI Web API. Operations teams view real-time data in PI Vision without deploying heavyweight PI interfaces, while bandwidth-friendly batching keeps satellite links economical.
-
Green-Energy Micro-Grid Dashboard: Export inverter, battery, and weather metrics from MQTT into Telegraf, which relays them to PI. PI AF analytics can calculate real-time power balance and feed a campus dashboard; historical deltas inform sustainability reports.
-
Brownfield SCADA Modernization: Legacy PLCs logged to CSV are ingested by Telegraf’s
tail
input; each row is parsed and immediately sent to PI via HTTP, creating a live data stream that co-exists with archival files while the SCADA upgrade proceeds incrementally. -
Synthetic Data Generator for Training: Telegraf’s
exec
input can run a script that emits simulated sensor patterns. Posting those metrics to a non-production PI server through the Web API supplies realistic datasets for PI Vision training sessions without risking production tags.
Feedback
Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Related Integrations
Related Integrations
HTTP and InfluxDB Integration
The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.
View IntegrationKafka and InfluxDB Integration
This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.
View IntegrationKinesis and InfluxDB Integration
The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.
View Integration