Suricata and OSI PI Integration
Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.
5B+
Telegraf downloads
#1
Time series database
Source: DB Engines
1B+
Downloads of InfluxDB
2,800+
Contributors
Table of Contents
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Input and output integration overview
This plugin reports internal performance counters of the Suricata IDS/IPS engine and processes the incoming data to fit Telegraf’s format.
This setup converts Telegraf into a lightweight PI Web API publisher, letting you push any Telegraf metric into the OSI PI System with a simple HTTP POST.
Integration details
Suricata
The Suricata plugin captures and reports internal performance metrics from the Suricata IDS/IPS engine, which includes a wide range of statistics such as traffic volume, memory usage, uptime, and counters for flows and alerts. This plugin listens for JSON-formatted log outputs from Suricata, allowing it to parse and format the data for integration with Telegraf. It operates as a service input plugin, meaning it actively waits for metrics or events from Suricata rather than collecting metrics at predefined intervals. The plugin supports configurations for different metrics versions allowing for enhanced flexibility and detailed data gathering.
OSI PI
OSI PI is an data management and analytics platform used in energy, manufacturing, and critical infrastructure. The PI Web API is its REST interface, exposing endpoints such as /piwebapi/streams/{WebId}/value that accept JSON payloads containing a Timestamp
and Value
. By pairing Telegraf’s flexible HTTP output with this endpoint, any metric Telegraf collects—SNMP counters, Modbus readings, Kubernetes stats—can be written directly into PI without installing proprietary interfaces. The configuration above authenticates with Basic or Kerberos, serializes each batch to JSON, and renders a minimal body template that aligns with PI Web API’s single-value write contract. Because Telegraf already supports batching, TLS, proxies, and custom headers, this approach scales from edge gateways to cloud VMs, allowing organizations to back-fill historical data, stream live telemetry, or mirror non-PI sources (e.g., Prometheus) into the PI data archive. It also sidesteps older SDK dependencies and enables hybrid architectures where PI remains on-prem while Telegraf agents run in containers or IIoT devices.
Configuration
Suricata
[[inputs.suricata]]
## Source
## Data sink for Suricata stats log. This is expected to be a filename of a
## unix socket to be created for listening.
# source = "/var/run/suricata-stats.sock"
## Delimiter
## Used for flattening field keys, e.g. subitem "alert" of "detect" becomes
## "detect_alert" when delimiter is "_".
# delimiter = "_"
## Metric version
## Version 1 only collects stats and optionally will look for alerts if
## the configuration setting alerts is set to true.
## Version 2 parses any event type message by default and produced metrics
## under a single metric name using a tag to differentiate between event
## types. The timestamp for the message is applied to the generated metric.
## Additional tags and fields are included as well.
# version = "1"
## Alerts
## In metric version 1, only status is captured by default, alerts must be
## turned on with this configuration option. This option does not apply for
## metric version 2.
# alerts = false
OSI PI
[[outputs.http]]
## PI Web API endpoint for writing a single value to a PI Point by Web ID
url = "https://${PI_HOST}/piwebapi/streams/${WEB_ID}/value"
## Use POST for each batch
method = "POST"
content_type = "application/json"
## Basic-auth header (base64-encoded "DOMAIN\\user:password")
headers = { Authorization = "Basic ${BASIC_AUTH}" }
## Serialize Telegraf metrics as JSON
data_format = "json"
json_timestamp_units = "1ms"
## Render the JSON body that PI Web API expects
body_template = """
{{ range .Metrics -}}
{ "Timestamp": "{{ .timestamp | formatDate \"2006-01-02T15:04:05Z07:00\" }}", "Value": {{ index .fields 0 }} }
{{ end -}}
"""
## Tune networking / batching if needed
# timeout = "10s"
# batch_size = 1
Input and output integration examples
Suricata
-
Network Traffic Analysis: Utilize the Suricata plugin to track detailed metrics about network intrusion attempts and performance, aiding in real-time threat detection and response. By visualizing captured alerts and flow statistics, security teams can quickly pinpoint vulnerabilities and mitigate risks.
-
Performance Monitoring Dashboard: Create a dashboard using the Suricata Telegraf plugin metrics to monitor the health and performance of the IDS/IPS engine. This use case provides an overview of memory usage, captured packets, and alert statistics, allowing teams to maintain optimal operating conditions.
-
Automated Security Reporting: Leverage the plugin to generate regular reports on alert statistics and traffic patterns, helping security analysts to identify long-term trends and prepare strategic defense initiatives. Automated reports also ensure that the security posture of the network is continually assessed.
-
Real-time Alert Handling: Integrate Suricata’s alert metrics within a broader incident response automation framework. By incorporating the inputs from the Suricata plugin, organizations can develop smart triggers for alerting and automated response workflows that enhance reaction times to potential threats.
OSI PI
-
Remote Pump Stations Telemetry Bridge: Install Telegraf on edge gateways at oil-field pump stations, gather flow-meter and vibration readings over Modbus, and POST them to the PI Web API. Operations teams view real-time data in PI Vision without deploying heavyweight PI interfaces, while bandwidth-friendly batching keeps satellite links economical.
-
Green-Energy Micro-Grid Dashboard: Export inverter, battery, and weather metrics from MQTT into Telegraf, which relays them to PI. PI AF analytics can calculate real-time power balance and feed a campus dashboard; historical deltas inform sustainability reports.
-
Brownfield SCADA Modernization: Legacy PLCs logged to CSV are ingested by Telegraf’s
tail
input; each row is parsed and immediately sent to PI via HTTP, creating a live data stream that co-exists with archival files while the SCADA upgrade proceeds incrementally. -
Synthetic Data Generator for Training: Telegraf’s
exec
input can run a script that emits simulated sensor patterns. Posting those metrics to a non-production PI server through the Web API supplies realistic datasets for PI Vision training sessions without risking production tags.
Feedback
Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Related Integrations
Related Integrations
HTTP and InfluxDB Integration
The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.
View IntegrationKafka and InfluxDB Integration
This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.
View IntegrationKinesis and InfluxDB Integration
The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.
View Integration