Hashicorp Vault and Apache Inlong Integration

Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.

info

This is not the recommended configuration for real-time query at scale. For query and compression optimization, high-speed ingest, and high availability, you may want to consider Hashicorp Vault and InfluxDB.

5B+

Telegraf downloads

#1

Time series database
Source: DB Engines

1B+

Downloads of InfluxDB

2,800+

Contributors

Table of Contents

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Input and output integration overview

The Hashicorp Vault plugin for Telegraf allows for the collection of metrics from Hashicorp Vault services, facilitating monitoring and operational insights.

The Inlong plugin connects Telegraf to Apache InLong, enabling seamless transmission of collected metrics to an InLong instance.

Integration details

Hashicorp Vault

The Hashicorp Vault plugin is designed to collect metrics from Vault agents running within a cluster. It enables Telegraf, an agent for collecting and reporting metrics, to interface with the Vault services, typically listening on a local address such as http://127.0.0.1:8200. This plugin requires a valid token for authorization, ensuring secure access to the Vault API. Users must configure either a token directly or provide a path to a token file, enhancing flexibility in authentication methods. Proper configuration of the timeout and optional TLS settings further relates to the security and responsiveness of the metrics collection process. As Vault is a critical tool in managing secrets and protecting sensitive data, monitoring its performance and health through this plugin is essential for maintaining operational security and efficiency.

Apache Inlong

This Inlong plugin is designed to publish metrics to an Apache InLong instance, which facilitates the management of data streams in a scalable manner. Apache InLong provides a robust framework for efficient data transmission between various components in a distributed environment. By leveraging this plugin, users can effectively route and transmit metrics collected by Telegraf to their InLong data-proxy infrastructure. As a key component in a data pipeline, the Inlong Output Plugin helps ensure that data is consistently formatted, streamed correctly, and managed in compliance with the standards set by Apache InLong, making it an essential tool for organizations looking to enhance their data analytics and reporting capabilities.

Configuration

Hashicorp Vault

[[inputs.vault]]
  ## URL for the Vault agent
  # url = "http://127.0.0.1:8200"

  ## Use Vault token for authorization.
  ## Vault token configuration is mandatory.
  ## If both are empty or both are set, an error is thrown.
  # token_file = "/path/to/auth/token"
  ## OR
  token = "s.CDDrgg5zPv5ssI0Z2P4qxJj2"

  ## Set response_timeout (default 5 seconds)
  # response_timeout = "5s"

  ## Optional TLS Config
  # tls_ca = /path/to/cafile
  # tls_cert = /path/to/certfile
  # tls_key = /path/to/keyfile

Apache Inlong

[[outputs.inlong]]
  ## Manager URL to obtain the Inlong data-proxy IP list for sending the data
  url = "http://127.0.0.1:8083"

  ## Unique identifier for the data-stream group
  group_id = "telegraf"  

  ## Unique identifier for the data stream within its group
  stream_id = "telegraf"  

  ## Data format to output.
  ## Each data format has its own unique set of configuration options, read
  ## more about them here:
  ## https://github.com/influxdata/telegraf/blob/master/docs/DATA_FORMATS_OUTPUT.md
  # data_format = "influx"

Input and output integration examples

Hashicorp Vault

  1. Centralized Secret Management Monitoring: Utilize the Vault plugin to monitor multiple Vault instances across a distributed system, allowing for a unified view of secret access patterns and system health. This setup can help DevOps teams quickly identify any anomalies in secret access, providing essential insights into security postures across different environments.

  2. Audit Logging Integration: Configure this plugin to feed monitoring metrics into an audit logging system, enabling organizations to have a comprehensive view of their Vault interactions. By correlating audit logs with metrics, teams can investigate issues, optimize performance, and ensure compliance with security policies more effectively.

  3. Performance Benchmarking During Deployments: During application deployments that interact with Vault, use the plugin to monitor the effects of those deployments on Vault performance. This allows engineering teams to understand how changes impact secret management workflows and to proactively address performance bottlenecks, ensuring smooth deployment processes.

  4. Alerting for Threshold Exceedance: Integrate this plugin with alerting mechanisms to notify administrators when metrics exceed predefined thresholds. This proactive monitoring can help teams respond swiftly to potential issues, maintaining system reliability and uptime by allowing them to take action before any serious incidents arise.

Apache Inlong

  1. Real-time Metrics Monitoring: Integrating the Inlong plugin with a real-time monitoring dashboard allows teams to visualize system performance continuously. As metrics flow from Telegraf to InLong, organizations can create dynamic panels in their monitoring tools, providing instant insights into system health, resource utilization, and performance bottlenecks. This setup encourages proactive management and swift identification of potential issues before they escalate into critical failures.

  2. Centralized Data Processing: Use the Inlong plugin to send Telegraf metrics to a centralized data processing pipeline that processes large volumes of data for analysis. By directing all collected metrics through Apache InLong, businesses can streamline their data workflows and ensure consistency in data formatting and processing. This centralized approach facilitates easier data integration with business intelligence tools and enhances decision-making through consolidated data insights.

  3. Integration with Machine Learning Models: By feeding metrics collected through the Inlong Output Plugin into machine learning models, teams can enhance predictive analytics capabilities. For instance, metrics can be analyzed to predict system failures or performance trends. This application allows organizations to leverage historical data and infer future performance, helping them optimize resource allocation and minimize downtime using automated alerts based on model predictions.

Feedback

Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Related Integrations

HTTP and InfluxDB Integration

The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.

View Integration

Kafka and InfluxDB Integration

This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.

View Integration

Kinesis and InfluxDB Integration

The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.

View Integration