VMware vSphere and Microsoft Fabric Integration

Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.

info

This is not the recommended configuration for real-time query at scale. For query and compression optimization, high-speed ingest, and high availability, you may want to consider VMware vSphere and InfluxDB.

5B+

Telegraf downloads

#1

Time series database
Source: DB Engines

1B+

Downloads of InfluxDB

2,800+

Contributors

Table of Contents

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Input and output integration overview

The VMware vSphere Telegraf plugin provides a means to collect metrics from VMware vCenter servers, allowing for comprehensive monitoring and management of virtual resources in a vSphere environment.

The Microsoft Fabric plugin writes metrics to Real time analytics in Fabric services, enabling powerful data storage and analysis capabilities.

Integration details

VMware vSphere

This plugin connects to VMware vSphere servers to gather a variety of metrics from virtual environments, enabling efficient monitoring and management of virtual resources. It interfaces with the vSphere API to collect statistics regarding clusters, hosts, resource pools, VMs, datastores, and vSAN entities, presenting them in a format suitable for analysis and visualization. The plugin is particularly valuable for administrators who manage VMware-based infrastructures, as it helps to track system performance, resource usage, and operational issues in real-time. By aggregating data from multiple sources, the plugin empowers users with insights that facilitate informed decision-making regarding resource allocation, troubleshooting, and ensuring optimal system performance. Additionally, the support for secret-store integration allows secure handling of sensitive credentials, promoting best practices in security and compliance assessments.

Microsoft Fabric

This plugin allows you to leverage Microsoft Fabric’s capabilities to store and analyze your Telegraf metrics. Eventhouse is a high-performance, scalable data-store designed for real-time analytics. It allows you to ingest, store and query large volumes of data with low latency. The plugin supports both events and metrics with versatile grouping options. It provides various configuration parameters including connection strings specifying details like the data source, ingestion types, and which tables to use for storage. With support for streaming ingestion and event streams, this plugin enables seamless integration and data flow into Microsoft’s analytics ecosystem, allowing for rich data querying capabilities and near-real-time processing.

Configuration

VMware vSphere

[[inputs.vsphere]]
  vcenters = [ "https://vcenter.local/sdk" ]
  username = "[email protected]"
  password = "secret"

  vm_metric_include = [
    "cpu.demand.average",
    "cpu.idle.summation",
    "cpu.latency.average",
    "cpu.readiness.average",
    "cpu.ready.summation",
    "cpu.run.summation",
    "cpu.usagemhz.average",
    "cpu.used.summation",
    "cpu.wait.summation",
    "mem.active.average",
    "mem.granted.average",
    "mem.latency.average",
    "mem.swapin.average",
    "mem.swapinRate.average",
    "mem.swapout.average",
    "mem.swapoutRate.average",
    "mem.usage.average",
    "mem.vmmemctl.average",
    "net.bytesRx.average",
    "net.bytesTx.average",
    "net.droppedRx.summation",
    "net.droppedTx.summation",
    "net.usage.average",
    "power.power.average",
    "virtualDisk.numberReadAveraged.average",
    "virtualDisk.numberWriteAveraged.average",
    "virtualDisk.read.average",
    "virtualDisk.readOIO.latest",
    "virtualDisk.throughput.usage.average",
    "virtualDisk.totalReadLatency.average",
    "virtualDisk.totalWriteLatency.average",
    "virtualDisk.write.average",
    "virtualDisk.writeOIO.latest",
    "sys.uptime.latest",
  ]

  host_metric_include = [
    "cpu.coreUtilization.average",
    "cpu.costop.summation",
    "cpu.demand.average",
    "cpu.idle.summation",
    "cpu.latency.average",
    "cpu.readiness.average",
    "cpu.ready.summation",
    "cpu.swapwait.summation",
    "cpu.usage.average",
    "cpu.usagemhz.average",
    "cpu.used.summation",
    "cpu.utilization.average",
    "cpu.wait.summation",
    "disk.deviceReadLatency.average",
    "disk.deviceWriteLatency.average",
    "disk.kernelReadLatency.average",
    "disk.kernelWriteLatency.average",
    "disk.numberReadAveraged.average",
    "disk.numberWriteAveraged.average",
    "disk.read.average",
    "disk.totalReadLatency.average",
    "disk.totalWriteLatency.average",
    "disk.write.average",
    "mem.active.average",
    "mem.latency.average",
    "mem.state.latest",
    "mem.swapin.average",
    "mem.swapinRate.average",
    "mem.swapout.average",
    "mem.swapoutRate.average",
    "mem.totalCapacity.average",
    "mem.usage.average",
    "mem.vmmemctl.average",
    "net.bytesRx.average",
    "net.bytesTx.average",
    "net.droppedRx.summation",
    "net.droppedTx.summation",
    "net.errorsRx.summation",
    "net.errorsTx.summation",
    "net.usage.average",
    "power.power.average",
    "storageAdapter.numberReadAveraged.average",
    "storageAdapter.numberWriteAveraged.average",
    "storageAdapter.read.average",
    "storageAdapter.write.average",
    "sys.uptime.latest",
  ]

  datacenter_metric_include = [] ## if omitted or empty, all metrics are collected
  datacenter_metric_exclude = [ "*" ] ## Datacenters are not collected by default.

  vsan_metric_include = [] ## if omitted or empty, all metrics are collected
  vsan_metric_exclude = [ "*" ] ## vSAN are not collected by default.

  separator = "_"
  max_query_objects = 256
  max_query_metrics = 256
  collect_concurrency = 1
  discover_concurrency = 1
  object_discovery_interval = "300s"
  timeout = "60s"
  use_int_samples = true
  custom_attribute_include = []
  custom_attribute_exclude = ["*"]
  metric_lookback = 3
  ssl_ca = "/path/to/cafile"
  ssl_cert = "/path/to/certfile"
  ssl_key = "/path/to/keyfile"
  insecure_skip_verify = false
  historical_interval = "5m"
  disconnected_servers_behavior = "error"
  use_system_proxy = true
  http_proxy_url = ""

Microsoft Fabric

[[outputs.microsoft_fabric]]
  ## The URI property of the resource on Azure
  connection_string = "https://trd-abcd.xx.kusto.fabric.microsoft.com;Database=kusto_eh;Table Name=telegraf_dump;Key=value"

  ## Client timeout
  # timeout = "30s"

Input and output integration examples

VMware vSphere

  1. Dynamic Resource Allocation: Utilize this plugin to monitor resource usage across a fleet of VMs and automatically adjust resource allocations based on performance metrics. This scenario could involve triggering scaling actions in real time based on CPU and memory usage metrics collected from the vSphere API, ensuring optimal performance and cost-efficiency.

  2. Capacity Planning and Forecasting: Leverage the historical metrics gathered from vSphere to conduct capacity planning. Analyzing the trends of CPU, memory, and storage usage over time helps administrators anticipate when additional resources will be needed, avoiding outages and ensuring that the virtual infrastructure can handle growth.

  3. Automated Alerting and Incident Response: Integrate this plugin with alerting tools to set up automated notifications based on the metrics gathered. For example, if the CPU usage on a host exceeds a specified threshold, it could trigger alerts and automatically initiate predefined remediation steps, such as migrating VMs to less utilized hosts.

  4. Performance Benchmarking Across Clusters: Use the metrics collected to compare the performance of clusters in different vCenters. This benchmarking provides insights into which cluster configurations yield the best resource efficiency and can guide future infrastructure enhancements.

Microsoft Fabric

  1. Real-time Monitoring Dashboards: Utilize the Microsoft Fabric plugin to feed live metrics from your applications into a real-time dashboard on Microsoft Fabric. This allows teams to visualize key performance indicators instantly, enabling quick decision-making and timely responses to performance issues.

  2. Automated Data Ingestion from IoT Devices: Use this plugin in scenarios where metrics from IoT devices need to be ingested into Azure for analysis. Using the plugin’s capabilities, data can be streamed continuously, facilitating real-time analytics and reporting without complex coding efforts.

  3. Cross-Platform Data Aggregation: Leverage the plugin to consolidate metrics from multiple systems and applications into a single Azure Data Explorer table. This use case enables easier data management and analysis by centralizing disparate data sources within a unified analytics framework.

  4. Enhanced Event Transformation Workflows: Integrate the plugin with Eventstreams to facilitate real-time event ingestion and transformation. By configuring different metrics and partition keys, users can manipulate the flow of data as it enters the system, allowing for advanced processing before the data reaches its final destination.

Feedback

Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Related Integrations

HTTP and InfluxDB Integration

The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.

View Integration

Kafka and InfluxDB Integration

This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.

View Integration

Kinesis and InfluxDB Integration

The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.

View Integration