Webhooks and AWS Redshift Integration
Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.
5B+
Telegraf downloads
#1
Time series database
Source: DB Engines
1B+
Downloads of InfluxDB
2,800+
Contributors
Table of Contents
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Input and output integration overview
The Webhooks plugin allows Telegraf to receive and process HTTP requests from various external services via webhooks. This plugin enables users to collect real-time metrics and events and integrate them into their monitoring solutions.
This plugin enables Telegraf to send metrics to Amazon Redshift using the PostgreSQL plugin, allowing metrics to be stored in a scalable, SQL-compatible data warehouse.
Integration details
Webhooks
This Telegraf plugin is designed to act as a webhook listener by starting an HTTP server that registers multiple webhook endpoints. It provides a way to collect events from various services by capturing HTTP requests sent to defined paths. Each service can be configured with its specific authentication details and request handling options. The plugin stands out by allowing integration with any Telegraf output plugin, making it versatile for event-driven architectures. By enabling efficient reception of events, it opens possibilities for real-time monitoring and response systems, essential for modern applications that need instantaneous event handling and processing.
AWS Redshift
This configuration uses the Telegraf PostgreSQL plugin to send metrics to Amazon Redshift, AWS’s fully managed cloud data warehouse that supports SQL-based analytics at scale. Although Redshift is based on PostgreSQL 8.0.2, it does not support all standard PostgreSQL features such as full JSONB, stored procedures, or upserts. Therefore, care must be taken to predefine compatible tables and schema when using Telegraf for Redshift integration. This setup is ideal for use cases that benefit from long-term, high-volume metric storage and integration with AWS analytics tools like QuickSight or Redshift Spectrum. Metrics stored in Redshift can be joined with business datasets for rich observability and BI analysis.
Configuration
Webhooks
[[inputs.webhooks]]
## Address and port to host Webhook listener on
service_address = ":1619"
## Maximum duration before timing out read of the request
# read_timeout = "10s"
## Maximum duration before timing out write of the response
# write_timeout = "10s"
[inputs.webhooks.filestack]
path = "/filestack"
## HTTP basic auth
#username = ""
#password = ""
[inputs.webhooks.github]
path = "/github"
# secret = ""
## HTTP basic auth
#username = ""
#password = ""
[inputs.webhooks.mandrill]
path = "/mandrill"
## HTTP basic auth
#username = ""
#password = ""
[inputs.webhooks.rollbar]
path = "/rollbar"
## HTTP basic auth
#username = ""
#password = ""
[inputs.webhooks.papertrail]
path = "/papertrail"
## HTTP basic auth
#username = ""
#password = ""
[inputs.webhooks.particle]
path = "/particle"
## HTTP basic auth
#username = ""
#password = ""
[inputs.webhooks.artifactory]
path = "/artifactory"
AWS Redshift
[[outputs.postgresql]]
## Redshift connection settings
host = "redshift-cluster.example.us-west-2.redshift.amazonaws.com"
port = 5439
user = "telegraf"
password = "YourRedshiftPassword"
database = "metrics"
sslmode = "require"
## Optional: specify a dynamic table template for inserting metrics
table_template = "telegraf_metrics"
## Note: Redshift does not support all PostgreSQL features; ensure your table exists and is compatible
Input and output integration examples
Webhooks
-
Real-time Notifications from Github: Integrate the Webhooks Input Plugin with Github to receive real-time notifications for events such as pull requests, commits, and issues. This allows development teams to instantly monitor crucial changes and updates in their repositories, improving collaboration and response times.
-
Automated Alerting with Rollbar: Use this plugin to listen for errors reported from Rollbar, enabling teams to react swiftly to bugs and issues in production. By forwarding these alerts into a centralized monitoring system, teams can prioritize their responses based on severity and prevent escalated downtime.
-
Performance Monitoring from Filestack: Capture events from Filestack to track file uploads, transformations, and errors. This setup helps businesses understand user interactions with file management processes, optimize workflow, and ensure high availability of file services.
-
Centralized Logging with Papertrail: Tie in all logs sent to Papertrail through webhooks, allowing you to consolidate your logging strategy. With real-time log forwarding, teams can analyze trends and anomalies efficiently, ensuring they maintain visibility over critical operations.
AWS Redshift
-
Business-Aware Infrastructure Monitoring: Store infrastructure metrics from Telegraf in Redshift alongside sales, marketing, or customer engagement data. Analysts can correlate system performance with business KPIs using SQL joins and window functions.
-
Historical Trend Analysis for Cloud Resources: Use Telegraf to continuously log CPU, memory, and I/O metrics to Redshift. Combine with time-series SQL queries and visualization tools like Amazon QuickSight to spot trends and forecast resource demand.
-
Security Auditing of System Behavior: Send metrics related to system logins, file changes, or resource spikes into Redshift. Analysts can build dashboards or reports for compliance auditing using SQL queries across multi-year data sets.
-
Cross-Environment SLA Reporting: Aggregate SLA metrics from multiple cloud accounts and regions using Telegraf, and push them to a central Redshift warehouse. Enable unified SLA compliance dashboards and executive reporting via a single SQL interface.
Feedback
Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Related Integrations
Related Integrations
HTTP and InfluxDB Integration
The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.
View IntegrationKafka and InfluxDB Integration
This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.
View IntegrationKinesis and InfluxDB Integration
The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.
View Integration