Webhooks and Databricks Integration

Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.

info

This is not the recommended configuration for real-time query at scale. For query and compression optimization, high-speed ingest, and high availability, you may want to consider Webhooks and InfluxDB.

5B+

Telegraf downloads

#1

Time series database
Source: DB Engines

1B+

Downloads of InfluxDB

2,800+

Contributors

Table of Contents

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Input and output integration overview

The Webhooks plugin allows Telegraf to receive and process HTTP requests from various external services via webhooks. This plugin enables users to collect real-time metrics and events and integrate them into their monitoring solutions.

Use Telegraf’s HTTP output plugin to push metrics straight into a Databricks Lakehouse by calling the SQL Statement Execution API with a JSON-wrapped INSERT or volume PUT command.

Integration details

Webhooks

This Telegraf plugin is designed to act as a webhook listener by starting an HTTP server that registers multiple webhook endpoints. It provides a way to collect events from various services by capturing HTTP requests sent to defined paths. Each service can be configured with its specific authentication details and request handling options. The plugin stands out by allowing integration with any Telegraf output plugin, making it versatile for event-driven architectures. By enabling efficient reception of events, it opens possibilities for real-time monitoring and response systems, essential for modern applications that need instantaneous event handling and processing.

Databricks

This configuration turns Telegraf into a lightweight ingestion agent for the Databricks Lakehouse. It leverages the Databricks SQL Statement Execution API 2.0, which accepts authenticated POST requests containing a JSON payload with a statement field. Each Telegraf flush dynamically renders a SQL INSERT (or, for file-based workflows, a PUT ... INTO /Volumes/... command) that lands the metrics into a Unity Catalog table or volume governed by Lakehouse security. Under the hood Databricks stores successful inserts as Delta Lake transactions, enabling ACID guarantees, time-travel, and scalable analytics. Operators can point the warehouse_id at any serverless or classic SQL warehouse, and all authentication is handled with a PAT or service-principal token—no agents or JDBC drivers required. Because Telegraf’s HTTP output supports custom headers, batching, TLS, and proxy settings, the same pattern scales from edge IoT gateways to container sidecars, consolidating infrastructure telemetry, application logs, or business KPIs directly into the Lakehouse for BI, ML, and Lakehouse Monitoring. Unity Catalog volumes provide a governed staging layer when file uploads and COPY INTO are preferred, and the approach aligns with Databricks’ recommended ingestion practices for partners and ISVs.

Configuration

Webhooks

[[inputs.webhooks]]
  ## Address and port to host Webhook listener on
  service_address = ":1619"

  ## Maximum duration before timing out read of the request
  # read_timeout = "10s"
  ## Maximum duration before timing out write of the response
  # write_timeout = "10s"

  [inputs.webhooks.filestack]
    path = "/filestack"

    ## HTTP basic auth
    #username = ""
    #password = ""

  [inputs.webhooks.github]
    path = "/github"
    # secret = ""

    ## HTTP basic auth
    #username = ""
    #password = ""

  [inputs.webhooks.mandrill]
    path = "/mandrill"

    ## HTTP basic auth
    #username = ""
    #password = ""

  [inputs.webhooks.rollbar]
    path = "/rollbar"

    ## HTTP basic auth
    #username = ""
    #password = ""

  [inputs.webhooks.papertrail]
    path = "/papertrail"

    ## HTTP basic auth
    #username = ""
    #password = ""

  [inputs.webhooks.particle]
    path = "/particle"

    ## HTTP basic auth
    #username = ""
    #password = ""

  [inputs.webhooks.artifactory]
    path = "/artifactory"

Databricks

[[outputs.http]]
  ## Databricks SQL Statement Execution API endpoint
  url = "https://{{ env "DATABRICKS_HOST" }}/api/2.0/sql/statements"

  ## Use POST to submit each Telegraf batch as a SQL request
  method = "POST"

  ## Personal-access token (PAT) for workspace or service principal
  headers = { Authorization = "Bearer {{ env "DATABRICKS_TOKEN" }}" }

  ## Send JSON that wraps the metrics batch in a SQL INSERT (or PUT into a Volume)
  content_type = "application/json"

  ## Serialize metrics as JSON so they can be embedded in the SQL statement
  data_format = "json"
  json_timestamp_units = "1ms"

  ## Build the request body.  Telegraf replaces the template variables at runtime.
  ## Example inserts a row per metric into a Unity-Catalog table.
  body_template = """
  {
    \"statement\": \"INSERT INTO ${TARGET_TABLE} VALUES {{range .Metrics}}(from_unixtime({{.timestamp}}/1000), {{.fields.usage}}, '{{.tags.host}}'){{end}}\",
    \"warehouse_id\": \"${WAREHOUSE_ID}\"
  }
  """

  ## Optional: add batching limits or TLS settings
  # batch_size = 500
  # timeout     = "10s"

Input and output integration examples

Webhooks

  1. Real-time Notifications from Github: Integrate the Webhooks Input Plugin with Github to receive real-time notifications for events such as pull requests, commits, and issues. This allows development teams to instantly monitor crucial changes and updates in their repositories, improving collaboration and response times.

  2. Automated Alerting with Rollbar: Use this plugin to listen for errors reported from Rollbar, enabling teams to react swiftly to bugs and issues in production. By forwarding these alerts into a centralized monitoring system, teams can prioritize their responses based on severity and prevent escalated downtime.

  3. Performance Monitoring from Filestack: Capture events from Filestack to track file uploads, transformations, and errors. This setup helps businesses understand user interactions with file management processes, optimize workflow, and ensure high availability of file services.

  4. Centralized Logging with Papertrail: Tie in all logs sent to Papertrail through webhooks, allowing you to consolidate your logging strategy. With real-time log forwarding, teams can analyze trends and anomalies efficiently, ensuring they maintain visibility over critical operations.

Databricks

  1. Edge-to-Lakehouse Telemetry Pipe: Deploy Telegraf on factory PLCs to sample vibration metrics and post them every second to a serverless SQL warehouse. Delta tables power PowerBI dashboards that alert engineers when thresholds drift.
  2. Blue-Green CI/CD Rollout Metrics: Attach a Telegraf sidecar to each Kubernetes canary pod; it inserts container stats into a Unity Catalog table tagged by deployment_id, letting Databricks SQL compare error-rate percentiles and auto-rollback underperforming versions.
  3. SaaS Usage Metering: Insert per-tenant API-call counters via the HTTP plugin; a nightly Lakehouse query aggregates usage into invoices, eliminating custom metering micro-services.
  4. Security Forensics Lake: Upload JSON batches of Suricata IDS events to a Unity Catalog volume using PUT commands, then run COPY INTO for near-real-time enrichment with Delta Live Tables, producing a searchable threat-intel lake that joins network logs with user session data.

Feedback

Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Related Integrations

HTTP and InfluxDB Integration

The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.

View Integration

Kafka and InfluxDB Integration

This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.

View Integration

Kinesis and InfluxDB Integration

The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.

View Integration