Wireguard and Grafana Integration

Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.

info

This is not the recommended configuration for real-time query at scale. For query and compression optimization, high-speed ingest, and high availability, you may want to consider Wireguard and InfluxDB.

5B+

Telegraf downloads

#1

Time series database
Source: DB Engines

1B+

Downloads of InfluxDB

2,800+

Contributors

Table of Contents

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Input and output integration overview

This plugin collects and reports statistics from the local Wireguard server, providing insights into its interfaces and peers.

This plugin enables Telegraf to stream metrics directly to Grafana dashboards in real-time, leveraging Grafana Live for instantaneous data visualization and operational insights.

Integration details

Wireguard

The Wireguard plugin collects statistics on the local Wireguard server using the wgctrl library. It reports gauge metrics for Wireguard interface device(s) and its peers. This enables monitoring of various parameters related to Wireguard functionality, enhancing an administrator’s capability to assess the performance and status of their Wireguard setup. The metrics collected can lead to proactive management of the network interfaces, aiding in detecting and resolving issues before they impact service availability.

Grafana

Telegraf can be used to send real-time data to Grafana using the Websocket output plugin. Metrics collected by Telegraf are instantly pushed to Grafana dashboards, enabling real-time visualization and analysis. This plugin is ideal for use cases where low latency, live data visualization is essential, such as operational monitoring, real-time analytics, and immediate incident response scenarios. It supports authentication headers, customizable data serialization formats (like JSON), and secure communication via TLS, offering flexibility and ease of integration in dynamic, interactive dashboard environments.

Configuration

Wireguard

[[inputs.wireguard]]
  ## Optional list of Wireguard device/interface names to query.
  ## If omitted, all Wireguard interfaces are queried.
  # devices = ["wg0"]

Grafana

[[outputs.websocket]]
  ## Grafana Live WebSocket endpoint
  url = "ws://localhost:3000/api/live/push/custom_id"

  ## Optional headers for authentication
  # [outputs.websocket.headers]
  #   Authorization = "Bearer YOUR_GRAFANA_API_TOKEN"

  ## Data format to send metrics
  data_format = "influx"

  ## Timeouts (make sure read_timeout is larger than server ping interval or set to zero).
  # connect_timeout = "30s"
  # write_timeout = "30s"
  # read_timeout = "30s"

  ## Optionally turn on using text data frames (binary by default).
  # use_text_frames = false

  ## TLS configuration
  # tls_ca = "/path/to/ca.pem"
  # tls_cert = "/path/to/cert.pem"
  # tls_key = "/path/to/key.pem"
  # insecure_skip_verify = false

Input and output integration examples

Wireguard

  1. Network Performance Monitoring: Monitor the performance metrics of your Wireguard interfaces, allowing you to track bandwidth usage and identify potential bottlenecks in real-time. By integrating these statistics into your existing monitoring system, network administrators can gain insights into the efficiency of their VPN configuration and make data-driven adjustments.

  2. Peer Health Checks: Implement health checks for Wireguard peers by monitoring the last handshake time and traffic metrics. If a peer shows a significant drop in RX/TX bytes or hasn’t completed a handshake in a timely manner, alerts can be triggered to address potential connectivity issues proactively.

  3. Dynamic Resource Allocation: Use the metrics collected by the Wireguard plugin to dynamically allocate or adjust network resources based on current bandwidth usage and peer activity. For instance, when a peer is heavily utilized, administrators can respond by allocating additional resources or adjusting configurations to optimize performance accordingly.

  4. Historical Data Analysis: Aggregate data over time to analyze historical trends in Wireguard device performance. By storing these metrics in a time-series database, teams can visualize long-term trends, assess the impact of configuration changes, and drive strategic decisions regarding network management.

Grafana

  1. Real-Time Infrastructure Dashboards: Deploy Telegraf to stream server health metrics directly to Grafana dashboards, enabling IT teams to visualize infrastructure performance in real-time. This setup allows immediate detection and response to critical system events.

  2. Interactive IoT Monitoring: Integrate IoT device metrics collected by Telegraf and push live data into Grafana, creating dynamic and interactive dashboards for monitoring smart city projects or manufacturing processes. This real-time visibility significantly enhances responsiveness and operational efficiency.

  3. Instantaneous Application Performance Analysis: Stream application metrics in real-time from production environments into Grafana dashboards, enabling development teams to rapidly detect and diagnose performance bottlenecks or anomalies during deployments, minimizing downtime and improving reliability.

  4. Live Event Analytics: Utilize Telegraf to capture and stream real-time audience or system metrics during major live events directly into Grafana dashboards. Event organizers can dynamically monitor and react to changing conditions or trends, significantly enhancing audience engagement and operational decision-making.

Feedback

Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Related Integrations

HTTP and InfluxDB Integration

The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.

View Integration

Kafka and InfluxDB Integration

This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.

View Integration

Kinesis and InfluxDB Integration

The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.

View Integration