Wireguard and OSI PI Integration

Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.

info

This is not the recommended configuration for real-time query at scale. For query and compression optimization, high-speed ingest, and high availability, you may want to consider Wireguard and InfluxDB.

5B+

Telegraf downloads

#1

Time series database
Source: DB Engines

1B+

Downloads of InfluxDB

2,800+

Contributors

Table of Contents

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Input and output integration overview

This plugin collects and reports statistics from the local Wireguard server, providing insights into its interfaces and peers.

This setup converts Telegraf into a lightweight PI Web API publisher, letting you push any Telegraf metric into the OSI PI System with a simple HTTP POST.

Integration details

Wireguard

The Wireguard plugin collects statistics on the local Wireguard server using the wgctrl library. It reports gauge metrics for Wireguard interface device(s) and its peers. This enables monitoring of various parameters related to Wireguard functionality, enhancing an administrator’s capability to assess the performance and status of their Wireguard setup. The metrics collected can lead to proactive management of the network interfaces, aiding in detecting and resolving issues before they impact service availability.

OSI PI

OSI PI is an data management and analytics platform used in energy, manufacturing, and critical infrastructure. The PI Web API is its REST interface, exposing endpoints such as /piwebapi/streams/{WebId}/value that accept JSON payloads containing a Timestamp and Value. By pairing Telegraf’s flexible HTTP output with this endpoint, any metric Telegraf collects—SNMP counters, Modbus readings, Kubernetes stats—can be written directly into PI without installing proprietary interfaces. The configuration above authenticates with Basic or Kerberos, serializes each batch to JSON, and renders a minimal body template that aligns with PI Web API’s single-value write contract. Because Telegraf already supports batching, TLS, proxies, and custom headers, this approach scales from edge gateways to cloud VMs, allowing organizations to back-fill historical data, stream live telemetry, or mirror non-PI sources (e.g., Prometheus) into the PI data archive. It also sidesteps older SDK dependencies and enables hybrid architectures where PI remains on-prem while Telegraf agents run in containers or IIoT devices.

Configuration

Wireguard

[[inputs.wireguard]]
  ## Optional list of Wireguard device/interface names to query.
  ## If omitted, all Wireguard interfaces are queried.
  # devices = ["wg0"]

OSI PI

[[outputs.http]]
  ## PI Web API endpoint for writing a single value to a PI Point by Web ID
  url = "https://${PI_HOST}/piwebapi/streams/${WEB_ID}/value"

  ## Use POST for each batch
  method       = "POST"
  content_type = "application/json"

  ## Basic-auth header (base64-encoded "DOMAIN\\user:password")
  headers = { Authorization = "Basic ${BASIC_AUTH}" }

  ## Serialize Telegraf metrics as JSON
  data_format           = "json"
  json_timestamp_units  = "1ms"

  ## Render the JSON body that PI Web API expects
  body_template = """
  {{ range .Metrics -}}
  { "Timestamp": "{{ .timestamp | formatDate \"2006-01-02T15:04:05Z07:00\" }}", "Value": {{ index .fields 0 }} }
  {{ end -}}
  """

  ## Tune networking / batching if needed
  # timeout     = "10s"
  # batch_size  = 1

Input and output integration examples

Wireguard

  1. Network Performance Monitoring: Monitor the performance metrics of your Wireguard interfaces, allowing you to track bandwidth usage and identify potential bottlenecks in real-time. By integrating these statistics into your existing monitoring system, network administrators can gain insights into the efficiency of their VPN configuration and make data-driven adjustments.

  2. Peer Health Checks: Implement health checks for Wireguard peers by monitoring the last handshake time and traffic metrics. If a peer shows a significant drop in RX/TX bytes or hasn’t completed a handshake in a timely manner, alerts can be triggered to address potential connectivity issues proactively.

  3. Dynamic Resource Allocation: Use the metrics collected by the Wireguard plugin to dynamically allocate or adjust network resources based on current bandwidth usage and peer activity. For instance, when a peer is heavily utilized, administrators can respond by allocating additional resources or adjusting configurations to optimize performance accordingly.

  4. Historical Data Analysis: Aggregate data over time to analyze historical trends in Wireguard device performance. By storing these metrics in a time-series database, teams can visualize long-term trends, assess the impact of configuration changes, and drive strategic decisions regarding network management.

OSI PI

  1. Remote Pump Stations Telemetry Bridge: Install Telegraf on edge gateways at oil-field pump stations, gather flow-meter and vibration readings over Modbus, and POST them to the PI Web API. Operations teams view real-time data in PI Vision without deploying heavyweight PI interfaces, while bandwidth-friendly batching keeps satellite links economical.

  2. Green-Energy Micro-Grid Dashboard: Export inverter, battery, and weather metrics from MQTT into Telegraf, which relays them to PI. PI AF analytics can calculate real-time power balance and feed a campus dashboard; historical deltas inform sustainability reports.

  3. Brownfield SCADA Modernization: Legacy PLCs logged to CSV are ingested by Telegraf’s tail input; each row is parsed and immediately sent to PI via HTTP, creating a live data stream that co-exists with archival files while the SCADA upgrade proceeds incrementally.

  4. Synthetic Data Generator for Training: Telegraf’s exec input can run a script that emits simulated sensor patterns. Posting those metrics to a non-production PI server through the Web API supplies realistic datasets for PI Vision training sessions without risking production tags.

Feedback

Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Related Integrations

HTTP and InfluxDB Integration

The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.

View Integration

Kafka and InfluxDB Integration

This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.

View Integration

Kinesis and InfluxDB Integration

The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.

View Integration