Zipkin and AWS Redshift Integration
Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.
5B+
Telegraf downloads
#1
Time series database
Source: DB Engines
1B+
Downloads of InfluxDB
2,800+
Contributors
Table of Contents
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Input and output integration overview
The Zipkin Input Plugin allows for the collection of tracing information and timing data from microservices. This capability is essential for diagnosing latency troubles within complex service-oriented environments.
This plugin enables Telegraf to send metrics to Amazon Redshift using the PostgreSQL plugin, allowing metrics to be stored in a scalable, SQL-compatible data warehouse.
Integration details
Zipkin
This plugin implements the Zipkin HTTP server to gather trace and timing data necessary for troubleshooting latency issues in microservice architectures. Zipkin is a distributed tracing system that helps gather timing data across various microservices, allowing teams to visualize the flow of requests and identify bottlenecks in performance. The plugin offers support for input traces in JSON or thrift formats based on the specified Content-Type. Additionally, it utilizes span metadata to track the timing of requests, enhancing the observability of applications that adhere to the OpenTracing standard. As an experimental feature, its configuration and schema may evolve over time to better align with user requirements and advancements in distributed tracing methodologies.
AWS Redshift
This configuration uses the Telegraf PostgreSQL plugin to send metrics to Amazon Redshift, AWS’s fully managed cloud data warehouse that supports SQL-based analytics at scale. Although Redshift is based on PostgreSQL 8.0.2, it does not support all standard PostgreSQL features such as full JSONB, stored procedures, or upserts. Therefore, care must be taken to predefine compatible tables and schema when using Telegraf for Redshift integration. This setup is ideal for use cases that benefit from long-term, high-volume metric storage and integration with AWS analytics tools like QuickSight or Redshift Spectrum. Metrics stored in Redshift can be joined with business datasets for rich observability and BI analysis.
Configuration
Zipkin
[[inputs.zipkin]]
## URL path for span data
# path = "/api/v1/spans"
## Port on which Telegraf listens
# port = 9411
## Maximum duration before timing out read of the request
# read_timeout = "10s"
## Maximum duration before timing out write of the response
# write_timeout = "10s"
AWS Redshift
[[outputs.postgresql]]
## Redshift connection settings
host = "redshift-cluster.example.us-west-2.redshift.amazonaws.com"
port = 5439
user = "telegraf"
password = "YourRedshiftPassword"
database = "metrics"
sslmode = "require"
## Optional: specify a dynamic table template for inserting metrics
table_template = "telegraf_metrics"
## Note: Redshift does not support all PostgreSQL features; ensure your table exists and is compatible
Input and output integration examples
Zipkin
-
Latency Monitoring in Microservices: Use the Zipkin Input Plugin to capture and analyze tracing data from a microservices architecture. By visualizing the request flow and pinpointing latency sources, development teams can optimize service interactions, improve response times, and ensure a smoother user experience across services.
-
Performance Optimization in Essential Services: Integrate the plugin within critical services to monitor not only the response times but also track specific annotations that could highlight performance issues. The ability to gather span data can help prioritize areas needing performance enhancements, leading to targeted improvements.
-
Dynamic Service Dependency Mapping: With the collected trace data, automatically map service dependencies and visualize them in dashboards. This helps teams understand how different services interact and the impact of failures or slowdowns, ultimately leading to better architectural decisions and faster resolutions of issues.
-
Anomaly Detection in Service Latency: Combine Zipkin data with machine learning models to detect unusual patterns in service latencies and request processing times. By automatically identifying anomalies, operations teams can respond proactively to emerging issues before they escalate into critical failures.
AWS Redshift
-
Business-Aware Infrastructure Monitoring: Store infrastructure metrics from Telegraf in Redshift alongside sales, marketing, or customer engagement data. Analysts can correlate system performance with business KPIs using SQL joins and window functions.
-
Historical Trend Analysis for Cloud Resources: Use Telegraf to continuously log CPU, memory, and I/O metrics to Redshift. Combine with time-series SQL queries and visualization tools like Amazon QuickSight to spot trends and forecast resource demand.
-
Security Auditing of System Behavior: Send metrics related to system logins, file changes, or resource spikes into Redshift. Analysts can build dashboards or reports for compliance auditing using SQL queries across multi-year data sets.
-
Cross-Environment SLA Reporting: Aggregate SLA metrics from multiple cloud accounts and regions using Telegraf, and push them to a central Redshift warehouse. Enable unified SLA compliance dashboards and executive reporting via a single SQL interface.
Feedback
Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Related Integrations
Related Integrations
HTTP and InfluxDB Integration
The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.
View IntegrationKafka and InfluxDB Integration
This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.
View IntegrationKinesis and InfluxDB Integration
The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.
View Integration